Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(16): 8373-8392, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38606767

RESUMEN

Amorphous calcium carbonate (ACC) is an important precursor phase for the formation of aragonite crystals in the shells of Pinctada fucata. To identify the ACC-binding protein in the inner aragonite layer of the shell, extracts from the shell were used in the ACC-binding experiments. Semiquantitative analyses using liquid chromatography-mass spectrometry revealed that paramyosin was strongly associated with ACC in the shell. We discovered that paramyosin, a major component of the adductor muscle, was included in the myostracum, which is the microstructure of the shell attached to the adductor muscle. Purified paramyosin accumulates calcium carbonate and induces the prism structure of aragonite crystals, which is related to the morphology of prism aragonite crystals in the myostracum. Nuclear magnetic resonance measurements revealed that the Glu-rich region was bound to ACC. Activity of the Glu-rich region was stronger than that of the Asp-rich region. These results suggest that paramyosin in the adductor muscle is involved in the formation of aragonite prisms in the myostracum.


Asunto(s)
Exoesqueleto , Carbonato de Calcio , Pinctada , Tropomiosina , Animales , Pinctada/química , Pinctada/metabolismo , Carbonato de Calcio/química , Carbonato de Calcio/metabolismo , Exoesqueleto/química , Exoesqueleto/metabolismo , Tropomiosina/química , Tropomiosina/metabolismo
2.
Sci Rep ; 13(1): 4909, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966252

RESUMEN

Marine elasmobranch fish contain urea, a protein denaturant, in their bodies. The urea-trimethylamine N-oxide (TMAO) counteraction mechanism contributes to urea-resistibility, where TMAO compensates for protein denaturation by urea. However, previous studies revealed that shark fast skeletal muscle myosin exhibits native activity at physiological urea concentrations in the absence of TMAO, suggesting that shark myosin has urea-resistibility. In this study, we compared the urea-resistibility of myosin alkali light chains (A1-LC and A2-LC) from banded houndshark and carp by examining the α-helical content at various urea concentrations. The α-helical content of carp myosin A1-LC and A2-LC gradually decreased as urea concentrations increased to 2 M. In contrast, the α-helical content of banded houndshark A1-LC increased between 0 and 0.5 M urea, and the α-helical content of A2-LC remained constant until 0.5 M urea. We determined the full-length sequences of the banded houndshark myosin light chains (A1-LC, A2-LC and DTNB-LC). Hydrophilicity analysis revealed that the N-terminal region (residues 28-34) of A1-LC from banded houndshark is more hydrophilic than the corresponding region of A1-LC from carp. These findings support the notion that shark myosin exhibits urea-resistibility independent of the urea-TMAO counteraction mechanism.


Asunto(s)
Cadenas Ligeras de Miosina , Tiburones , Animales , Urea/química , Músculo Esquelético
3.
Methods Protoc ; 2(2)2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31164616

RESUMEN

The nacreous layer of shells and pearls is composed of aragonite crystals arranged in an organic matrix. The organic matrix contains chitin and several proteins that regulate the formation of the nacreous layer. Owing to their strong interactions in the organic matrix, the current method for extraction of insoluble proteins from the pre-powdered nacreous layer involves heating to high temperatures in the presence of a detergent (e.g., sodium dodecyl sulfate, SDS) and reductant (e.g., dithiothreitol, DTT), which is likely to induce protein degradation. Therefore, we have developed an electroextraction method to isolate proteins from the organic matrix of a nacreous organic sheet, that was obtained following the decalcification of shells in their original shape. Our electroextraction method employs milder conditions without heating or detergent. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns of the electro-extracted proteins (EEPs) under non-reduced and reduced conditions revealed that this method yielded a greater number of different proteins compared with the conventional extraction method and the isolated EEPs retained their disulfide bonds. Our method is able to easily extract insoluble proteins from the nacreous layer under mild conditions and will undoubtedly aid future analyses into the functions of the nacreous layer proteins.

4.
Mar Biotechnol (NY) ; 20(5): 594-602, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29846830

RESUMEN

Color is one of the most important factors determining the commercial value of pearls. Pinctada fucata is a well-known pearl oyster producing high-quality Akoya pearls. Phenotypic variation in amount of yellow pigmentation produces white and yellowish pearls. It has been reported that polymorphism of yellow pigmentation of Akoya pearls is genetically regulated, but the responsible gene(s) has remained unknown. Here, we prepared pearl sac pairs formed in the same recipient oyster but coming from donor oysters that differ in their color. These two pearl sacs produced pearls with different yellowness even in the same recipient oyster. Yellow tone of produced pearls was consistent with shell nacre color of donor oysters from which mantle grafts were prepared, indicating that donor oysters strongly contribute to the yellow coloration of Akoya pearls. We also conducted comparative RNA-seq analysis and retrieved several candidate genes involved in the pearl coloration. Whole gene expression patterns of pair sacs were not grouped by pearl color they produced, but grouped by recipient oysters in which they were grown, suggesting that the number of genes involved in the yellow coloration is quite small, and that recipient oyster affects gene expression of the majority of genes in the pearl sac.


Asunto(s)
Ostreidae/metabolismo , Pinctada/metabolismo , Animales , Perfilación de la Expresión Génica , Ostreidae/genética , Pigmentación/genética , Pigmentación/fisiología , Pinctada/genética
5.
Mar Biotechnol (NY) ; 20(2): 155-167, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29340846

RESUMEN

Although a wide variety of proteins and genes possibly related to the shell formation in bivalve have been identified, their functions have been only partially approved. We have recently performed deep sequencing of expressed sequence tags (ESTs) from the pearl oyster Pinctada fucata using a next-generation sequencer, identifying a dozen of novel gene candidates which are possibly associated with the nacreous layer formation. Among the ESTs, we focused on three novel isoforms (N16-6, N16-7, and N19-2) of N16 and N19 families with reference to five known genes in the families and determined the full-length cDNA sequences of these isoforms. Reverse transcription-polymerase chain reaction revealed that N16-6 was expressed in gill, gonad, adductor muscle, and mantle, whereas N16-7 exclusively in mantle. N19-2 was expressed in all tissues examined. In situ hybridization demonstrated their regional expression in mantle and pearl sac, which well corresponded to those shown by EST analysis previously reported. Shells in the pearl oyster injected with dsRNAs of N16-7 and N19-2 showed abnormal surface appearance in the nacreous layer. Taken together, novel isoforms in N16 and N19 families shown in this study are essential to form the nacreous layer.


Asunto(s)
Nácar/genética , Pinctada/genética , Secuencia de Aminoácidos , Exoesqueleto/química , Animales , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Hibridación in Situ , Nácar/metabolismo , Pinctada/metabolismo , Isoformas de Proteínas/genética , Interferencia de ARN , Análisis de Secuencia de ADN , Distribución Tisular
6.
PLoS One ; 9(1): e84706, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24454739

RESUMEN

In our previous publication, we identified novel gene candidates involved in shell formation by EST analyses of the nacreous and prismatic layer-forming tissues in the pearl oyster Pinctada fucata. In the present study, 14 of those genes, including two known genes, were selected and further examined for their involvement in shell formation using the RNA interference. Molecular characterization based on the deduced amino acid sequences showed that seven of the novel genes encode secretory proteins. The tissue distribution of the transcripts of the genes, as analyzed by RT-PCR and in situ hybridization, was mostly consistent with those obtained by the EST analysis reported previously. Shells in the pearl oysters injected with dsRNAs targeting genes 000027, 000058, 000081, 000096, 000113 (nacrein), 000118, 000133 and 000411 (MSI60), which showed expression specific to the nacreous layer forming tissues, showed abnormal surface appearance in this layer. Individuals injected with dsRNAs targeting genes 000027, 000113 and 000133 also exhibited abnormal prismatic layers. Individuals injected with dsRNAs targeting genes 000031, 000066, 000098, 000145, 000194 and 000200, which showed expression specific to prismatic layer forming tissues, displayed an abnormal surface appearance in both the nacreous and prismatic layers. Taken together, the results suggest that the genes involved in prismatic layer formation might also be involved in the formation of the nacreous layers.


Asunto(s)
Ostreidae/metabolismo , Interferencia de ARN , Animales , Clonación Molecular , ADN Complementario , Ostreidae/genética , ARN Mensajero/genética , Distribución Tisular
7.
Zoolog Sci ; 30(10): 817-25, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24125646

RESUMEN

The mechanisms of contraction of molluscan striated and smooth muscles differ from those in vertebrates. Molluscan striated muscles adopt a myosin-linked regulation, unlike vertebrates. Smooth muscles in these species show a unique form of contraction, in which the tension is maintained for a long time with little energy consumption, called catch. The available gene information is insufficient to elucidate the mechanism of contraction of molluscan muscles at the molecular level. BLAST searching was thus used to annotate genes encoding proteins related to muscle contraction in the completely determined genome of the pearl oyster Pinctada fucata using partial nucleotide sequences obtained by 3' RACE. We identified genes that encode components of the thick-filament, such as myosin heavy chain, myosin essential and regulatory light chains, paramyosin and twitchin; of the thin-filament, such as actin, tropomyosin, troponin-T, troponin-I, troponin-C and calponin; and the PKA catalytic subunit, which is a key player in the regulation of catch contraction. The analysis indicated that isoforms of myosin heavy chain, paramyosin, and calponin are produced by alternative splicing.


Asunto(s)
Genoma , Proteínas Musculares/genética , Pinctada/genética , Pinctada/metabolismo , Animales , Regulación de la Expresión Génica/fisiología , Contracción Muscular/fisiología , Proteínas Musculares/metabolismo , Transcriptoma
8.
J Biol Chem ; 284(27): 18015-20, 2009 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-19439402

RESUMEN

Molluscan smooth muscles exhibit a low energy cost contraction called catch. Catch is regulated by twitchin phosphorylation and dephosphorylation. Recently, we found that the D2 fragment of twitchin containing the D2 site (Ser-4316) and flanking immunoglobulin motifs (TWD2-S) formed a heterotrimeric complex with myosin and with actin in the region that interacts with myosin loop 2 (Funabara, D., Hamamoto, C., Yamamoto, K., Inoue, A., Ueda, M., Osawa, R., Kanoh, S., Hartshorne, D. J., Suzuki, S., and Watabe, S. (2007) J. Exp. Biol. 210, 4399-4410). Here, we show that TWD2-S interacts directly with myosin loop 2 in a phosphorylation-sensitive manner. A synthesized peptide, CAQNKEAETTGTHKKRKSSA, based on the myosin loop 2 sequence (loop 2 peptide), competitively inhibited the formation of the trimeric complex. Isothermal titration calorimetry showed that TWD2-S binds to the loop 2 peptide with a K(a) of (2.44 +/- 0.09) x 10(5) m(-1) with two binding sites. The twitchin-binding peptide of actin, AGFAGDDAP, which also inhibited formation of the trimeric complex, bound to TWD2-S with a K(a) of (5.83 +/- 0.05) x 10(4) m(-1) with two binding sites. The affinity of TWD2-S to actin and myosin was slightly decreased with an increase of pH, but this effect could not account for the marked pH dependence of catch in permeabilized fibers. The complex formation also showed a moderate Ca(2+) sensitivity in that in the presence of Ca(2+) complex formation was reduced.


Asunto(s)
Actinas/metabolismo , Proteínas Musculares/metabolismo , Músculo Liso/fisiología , Miosinas/metabolismo , Mytilus/metabolismo , Animales , Unión Competitiva , Calcio/metabolismo , Calorimetría , Concentración de Iones de Hidrógeno , Complejos Multiproteicos/metabolismo , Contracción Muscular/fisiología
9.
Fish Sci ; 74(3): 677-686, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19777122

RESUMEN

The catch state in Mytilus anterior byssus retractor muscle is regulated by phosphorylation and dephosphorylation of twitchin, a member of the titin/connectin superfamily, and involves two serine residues, Ser-1075 (D1) and Ser-4316 (D2). This study was undertaken to examine whether isoforms of twitchin were expressed in various muscles of the mussel Mytilus galloprovincialis by reverse transcription-polymerase chain reaction. Mussel tissues, including both catch and non-catch muscles, contained various twitchin isoforms that all contained the D2 site and the kinase domain. However, sequence alterations were detected around the D1 site, notably a potential deletion of the D1 site. All isoforms from catch muscles contained both the D1 and D2 sites, whereas those from non-catch muscles also expressed the D2 site, but some of them lacked the D1 site. This suggests that the D1 site of twitchin is essential to the mechanism of catch. Genomic DNA analysis revealed that twitchin isoforms are produced by alternative splicing.

10.
J Exp Biol ; 210(Pt 24): 4399-410, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18055628

RESUMEN

Molluscan smooth muscle can maintain tension over extended periods with little energy expenditure, a process termed catch. Catch is thought to be regulated by phosphorylation of a thick filament protein, twitchin, and involves two phosphorylation sites, D1 and D2, close to the N and C termini, respectively. This study was initiated to investigate the role of the D2 site and its phosphorylation in the catch mechanism. A peptide was constructed containing the D2 site and flanking immunoglobulin (Ig) motifs. It was shown that the dephosphorylated peptide, but not the phosphorylated form, bound to both actin and myosin. The binding site on actin was within the sequence L10 to P29. This region also binds to loop 2 of the myosin head. The dephosphorylated peptide linked myosin and F-actin and formed a trimeric complex. Electron microscopy revealed that twitchin is distributed on the surface of the thick filament with an axial periodicity of 36.25 nm and it is suggested that the D2 site aligns with the myosin heads. It is proposed that the complex formed with the dephosphorylated D2 site of twitchin, F-actin and myosin represents a component of the mechanical linkage in catch.


Asunto(s)
Actinas/metabolismo , Proteínas Musculares/metabolismo , Tono Muscular/fisiología , Miosinas/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/ultraestructura , Secuencia de Aminoácidos , Animales , Sitios de Unión , Fenómenos Biomecánicos , ATPasa de Ca(2+) y Mg(2+)/antagonistas & inhibidores , Pollos , Modelos Moleculares , Datos de Secuencia Molecular , Moluscos/efectos de los fármacos , Moluscos/ultraestructura , Proteínas Musculares/química , Proteínas Musculares/ultraestructura , Tono Muscular/efectos de los fármacos , Músculos/efectos de los fármacos , Músculos/ultraestructura , Proteínas Mutantes/metabolismo , Péptidos/química , Péptidos/farmacología , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Tropomiosina/metabolismo
11.
J Muscle Res Cell Motil ; 26(6-8): 455-60, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16453161

RESUMEN

Molluscan catch muscle can maintain tension for a long time with little energy consumption. This unique phenomenon is regulated by phosphorylation and dephosphorylation of twitchin, a member of the titin/connectin family. The catch state is induced by a decrease of intracellular Ca2+ after the active contraction and is terminated by the phosphorylation of twitchin by the cAMP-dependent protein kinase (PKA). Twitchin, from the well-known catch muscle, the anterior byssus retractor muscle (ABRM) of the mollusc Mytilus, incorporates three phosphates into two major sites D1 and D2, and some minor sites. Dephosphorylation is required for re-entering the catch state. Myosin, actin and twitchin are essential players in the mechanism responsible for catch during which force is maintained while myosin cross-bridge cycling is very slow. Dephosphorylation of twitchin allows it to bind to F-actin, whereas phosphorylation decreases the affinity of the two proteins. Twitchin has been also been shown to be a thick filament-binding protein. These findings raise the possibility that twitchin regulates the myosin cross-bridge cycle and force output by interacting with both actin and myosin resulting in a structure that connects thick and thin filaments in a phosphorylation-dependent manner.


Asunto(s)
Moluscos/fisiología , Contracción Muscular/fisiología , Proteínas Musculares/fisiología , Músculo Liso/fisiología , Animales , Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Músculo Liso/metabolismo , Fosforilación , Fosfotransferasas/metabolismo
12.
J Biol Chem ; 278(31): 29308-16, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12756258

RESUMEN

The phosphorylation state of the myosin thick filament-associated mini-titin, twitchin, regulates catch force maintenance in molluscan smooth muscle. The full-length cDNA for twitchin from the anterior byssus retractor muscle of the mussel Mytilus was obtained using PCR and 5'rapid amplification of cDNA ends, and its derived amino acid sequence showed a large molecule ( approximately 530 kDa) with a motif arrangement as follows: (Ig)11(IgFn2)2Ig(Fn)3Ig(Fn)2Ig(Fn)3(Ig)2(Fn)2(Ig)2 FnKinase(Ig)4. Other regions of note include a 79-residue sequence between Ig domains 6 and 7 (from the N terminus) in which more than 60% of the residues are Pro, Glu, Val, or Lys and between the 7th and 8th Ig domains, a DFRXXL motif similar to that thought to be necessary for high affinity binding of myosin light chain kinase to F-actin. Two major phosphorylation sites, i.e. D1 and D2, were located in linker regions between Ig domains 7 and 8 and Ig domains 21 and 22, respectively. Correlation of the phosphorylation state of twitchin, using antibodies specific to D1 and D2, with mechanical properties suggested that phosphorylation of both D1 and D2 is required for relaxation from the catch state.


Asunto(s)
Bivalvos/química , Proteínas Musculares/química , Proteínas Musculares/fisiología , Músculos/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Fenómenos Biomecánicos , ADN Complementario/análisis , ADN Complementario/química , Datos de Secuencia Molecular , Proteínas Musculares/genética , Músculos/fisiología , Fosforilación , Reacción en Cadena de la Polimerasa , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...