Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PDA J Pharm Sci Technol ; 75(6): 474-489, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33990422

RESUMEN

In the past decades, the silicone layer thickness and its distribution on the inner glass barrels of prefilled syringes have been characterized in several studies. However, the limited number of adequate methods to characterize thin baked-on silicone layers and the destructive nature of some analytical techniques suggest challenges to the inter-lab reproducibility of some methods. In this study, the measured silicone layer thickness of baked-on siliconized syringes was compared between two laboratories, both equipped with white light reflectometry coupled to laser interferometry instrumentation (Bouncer, LE UT 1.0, LE UT 2.0). The quantity of silicone oil of a subset of those syringes was measured by Fourier transform infrared spectroscopy. Glide force tests were realized as complementary measurements on both syringes analyzed by white light reflectometry coupled to laser interferometry instrumentation and on non-analyzed identical syringes from the same lot. Silicone profiles of all prefilled syringes including the limit of detection results replaced with 20 nm were comparable, but values were slightly lower when measured with the Bouncer instrument. An increase of the layer thickness from the finger flange to the needle side was found for all syringes with all instruments (20 nm to 130-140 nm). Glide force results were similar except for a difference in peak width in the break loose region between the laboratories. The mean quantities of silicone oil found by both laboratories were similar (64 µg/syringe and 69 µg/syringe). Overall, comparable results between laboratories suggest a good reproducibility of the thickness measurement method as a result of thorough method understanding and defining key method parameters. Hence this study presents a robust inter-lab comparison between silicone layer thickness measurements that has been a lack in the literature up to now.


Asunto(s)
Siliconas , Jeringas , Reproducibilidad de los Resultados , Aceites de Silicona , Espectroscopía Infrarroja por Transformada de Fourier
2.
PDA J Pharm Sci Technol ; 72(3): 278-297, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29343617

RESUMEN

The silicone lubricant layer in prefilled syringes has been investigated with regards to siliconization process performance, prefilled syringe functionality, and drug product attributes, such as subvisible particle levels, in several studies in the past. However, adequate methods to characterize the silicone oil layer thickness and distribution are limited, and systematic evaluation is missing. In this study, white light interferometry was evaluated to close this gap in method understanding. White light interferometry demonstrated a good accuracy of 93-99% for MgF2 coated, curved standards covering a thickness range of 115-473 nm. Thickness measurements for sprayed-on siliconized prefilled syringes with different representative silicone oil distribution patterns (homogeneous, pronounced siliconization at flange or needle side, respectively) showed high instrument (0.5%) and analyst precision (4.1%). Different white light interferometry instrument parameters (autofocus, protective shield, syringe barrel dimensions input, type of non-siliconized syringe used as base reference) had no significant impact on the measured average layer thickness. The obtained values from white light interferometry applying a fully developed method (12 radial lines, 50 mm measurement distance, 50 measurements points) were in agreement with orthogonal results from combined white and laser interferometry and 3D-laser scanning microscopy. The investigated syringe batches (lot A and B) exhibited comparable longitudinal silicone oil layer thicknesses ranging from 170-190 nm to 90-100 nm from flange to tip and homogeneously distributed silicone layers over the syringe barrel circumference (110- 135 nm). Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. A silicone oil layer thickness of 100-200 nm was thus sufficient for adequate functionality in this particular study. Filling the syringe with a surrogate solution including short-term exposure and emptying did not significantly influence the silicone oil layer at the investigated silicone level. It thus appears reasonable to use this approach to characterize silicone oil layers in filled syringes over time. The developed method characterizes non-destructively the layer thickness and distribution of silicone oil in empty syringes and provides fast access to reliable results. The gained information can be further used to support optimization of siliconization processes and increase the understanding of syringe functionality.LAY ABSTRACT: Silicone oil layers as lubricant are required to ensure functionality of prefilled syringes. Methods evaluating these layers are limited, and systematic evaluation is missing. The aim of this study was to develop and assess white light interferometry as an analytical method to characterize sprayed-on silicone oil layers in 1 mL prefilled syringes. White light interferometry showed a good accuracy (93-99%) as well as instrument and analyst precision (0.5% and 4.1%, respectively). Different applied instrument parameters had no significant impact on the measured layer thickness. The obtained values from white light interferometry applying a fully developed method concurred with orthogonal results from 3D-laser scanning microscopy and combined white light and laser interferometry. The average layer thicknesses in two investigated syringe lots gradually decreased from 170-190 nm at the flange to 100-90 nm at the needle side. The silicone layers were homogeneously distributed over the syringe barrel circumference (110-135 nm) for both lots. Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. Syringe filling with a surrogate solution, including short-term exposure and emptying, did not significantly affect the silicone oil layer. The developed, non-destructive method provided reliable results to characterize the silicone oil layer thickness and distribution in empty siliconized syringes. This information can be further used to support optimization of siliconization processes and increase understanding of syringe functionality.


Asunto(s)
Aceites de Silicona , Jeringas , Interferometría , Microscopía Confocal
3.
J Pharm Sci ; 105(12): 3520-3531, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27773525

RESUMEN

A significant number of therapeutic proteins are marketed as pre-filled syringes or other drug/device combination products and have been safely used in these formats for years. Silicone oil, which is used as lubricant, can migrate into the drug product and may interact with therapeutic proteins. In this study, particles in the size range of 0.2-5 µm and ≥1 µm as determined by resonant mass measurement and micro-flow imaging/light obscuration, respectively, resulted from silicone sloughing off the container barrel after agitation. The degree of droplet formation correlated well with the applied baked-on silicone levels of 13 µg and 94 µg per cartridge. Silicone migration was comparable in placebo, 2 mg/mL and 33 mg/mL IgG1 formulations containing 0.04% (w/v) polysorbate 20. Headspace substantially increased the formation of silicone droplets during agitation. The highest particle concentrations reached, however, were still very low compared to numbers described for spray-on siliconized containers. When applying adequate baked-on silicone levels below 100 µg, bake-on siliconization efficiently limits silicone migration into the drug product without compromising device functionality.


Asunto(s)
Anticuerpos Monoclonales/química , Química Farmacéutica/métodos , Inmunoglobulina G/química , Siliconas/química , Anticuerpos Monoclonales/análisis , Inmunoglobulina G/análisis , Tamaño de la Partícula , Soluciones Farmacéuticas/análisis , Soluciones Farmacéuticas/química , Polímeros/análisis , Polímeros/química , Siliconas/análisis , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Sulfonas/análisis , Sulfonas/química
4.
Eur J Pharm Biopharm ; 105: 209-22, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27328279

RESUMEN

Combination products have become popular formats for the delivery of parenteral medications. Bake-on siliconization of glass syringes or cartridges allows good piston break-loose and gliding during injection at low silicone levels. Although widely implemented in industry, still little is known and published on the effect of the bake-on process on the silicone level, layer thickness and chemical composition. In this study, cartridges were bake-on siliconized in a heat-tunnel by varying both temperature from 200 to 350°C for 12min and time from 5min to 3h at 316°C. Furthermore, a heat-oven with air-exchange was established as an experimental model. Heat treatment led to a time- and temperature-dependent decrease in the silicone level and layer thickness. After 1h at 316°C lubrication was insufficient. The silicone levels substantially decreased between 250 and 316°C after 12min. After bake-on, the peak molecular weight of the silicone remained unchanged while fractions below 5000g/mol were removed at 316 and 350°C. Cyclic low molecular weight siloxanes below 500g/mol were volatilized under all conditions. Despite most of the baked-on silicone was solvent-extractable, contact angle analysis indicated a strong binding of a remaining, thin silicone film to the glass surface.


Asunto(s)
Siliconas/química , Temperatura , Cromatografía en Gel , Sistemas de Liberación de Medicamentos , Cromatografía de Gases y Espectrometría de Masas , Infusiones Parenterales , Peso Molecular , Propiedades de Superficie , Termogravimetría
5.
Eur J Pharm Biopharm ; 104: 200-15, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27178628

RESUMEN

Biopharmaceutical products are increasingly commercialized as drug/device combinations to enable self-administration. Siliconization of the inner syringe/cartridge glass barrel for adequate functionality is either performed at the supplier or drug product manufacturing site. Yet, siliconization processes are often insufficiently investigated. In this study, an optimized bake-on siliconization process for cartridges using a pilot-scale siliconization unit was developed. The following process parameters were investigated: spray quantity, nozzle position, spray pressure, time for pump dosing and the silicone emulsion concentration. A spray quantity of 4mg emulsion showed best, immediate atomization into a fine spray. 16 and 29mg of emulsion, hence 4-7-times the spray volume, first generated an emulsion jet before atomization was achieved. Poor atomization of higher quantities correlated with an increased spray loss and inhomogeneous silicone distribution, e.g., due to runlets forming build-ups at the cartridge lower edge and depositing on the star wheel. A prolonged time for pump dosing of 175ms led to a more intensive, long-lasting spray compared to 60ms as anticipated from a higher air-to-liquid ratio. A higher spray pressure of 2.5bar did not improve atomization but led to an increased spray loss. At a 20mm nozzle-to-flange distance the spray cone exactly reached the cartridge flange, which was optimal for thicker silicone layers at the flange to ease piston break-loose. Initially, 10µg silicone was sufficient for adequate extrusion in filled cartridges. However, both maximum break-loose and gliding forces in filled cartridges gradually increased from 5-8N to 21-22N upon 80weeks storage at room temperature. The increase for a 30µg silicone level from 3-6N to 10-12N was moderate. Overall, the study provides a comprehensive insight into critical process parameters during the initial spray-on process and the impact of these parameters on the characteristics of the silicone layer, also in context of long-term product storage. The presented experimental toolbox may be utilized for development or evaluation of siliconization processes.


Asunto(s)
Siliconas/química , Emulsiones
6.
Eur J Pharm Biopharm ; 96: 304-13, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26316044

RESUMEN

Pre-filled syringes (PFS) and auto-injection devices with cartridges are increasingly used for parenteral administration. To assure functionality, silicone oil is applied to the inner surface of the glass barrel. Silicone oil migration into the product can be minimized by applying a thin but sufficient layer of silicone oil emulsion followed by thermal bake-on versus spraying-on silicone oil. Silicone layers thicker than 100nm resulting from regular spray-on siliconization can be characterized using interferometric profilometers. However, the analysis of thin silicone layers generated by bake-on siliconization is more challenging. In this paper, we have evaluated Fourier transform infrared (FTIR) spectroscopy after solvent extraction and a new 3D-Laser Scanning Microscopy (3D-LSM) to overcome this challenge. A multi-step solvent extraction and subsequent FTIR spectroscopy enabled to quantify baked-on silicone levels as low as 21-325µg per 5mL cartridge. 3D-LSM was successfully established to visualize and measure baked-on silicone layers as thin as 10nm. 3D-LSM was additionally used to analyze the silicone oil distribution within cartridges at such low levels. Both methods provided new, highly valuable insights to characterize the siliconization after processing, in order to achieve functionality.


Asunto(s)
Inyecciones a Chorro/instrumentación , Aceites de Silicona/química , Siliconas/análisis , Jeringas , Fenómenos Químicos , Emulsiones , Heptanos/química , Calor , Imagenología Tridimensional , Límite de Detección , Microscopía de Fuerza Atómica , Microscopía Confocal , Nebulizadores y Vaporizadores , Proyectos Piloto , Siliconas/química , Siliconas/aislamiento & purificación , Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...