Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World J Orthop ; 6(8): 641-8, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26396941

RESUMEN

AIM: To quantify the wrist cartilage cross-sectional area in humans from a 3D magnetic resonance imaging (MRI) dataset and to assess the corresponding reproducibility. METHODS: The study was conducted in 14 healthy volunteers (6 females and 8 males) between 30 and 58 years old and devoid of articular pain. Subjects were asked to lie down in the supine position with the right hand positioned above the pelvic region on top of a home-built rigid platform attached to the scanner bed. The wrist was wrapped with a flexible surface coil. MRI investigations were performed at 3T (Verio-Siemens) using volume interpolated breath hold examination (VIBE) and dual echo steady state (DESS) MRI sequences. Cartilage cross sectional area (CSA) was measured on a slice of interest selected from a 3D dataset of the entire carpus and metacarpal-phalangeal areas on the basis of anatomical criteria using conventional image processing radiology software. Cartilage cross-sectional areas between opposite bones in the carpal region were manually selected and quantified using a thresholding method. RESULTS: Cartilage CSA measurements performed on a selected predefined slice were 292.4 ± 39 mm(2) using the VIBE sequence and slightly lower, 270.4 ± 50.6 mm(2), with the DESS sequence. The inter (14.1%) and intra (2.4%) subject variability was similar for both MRI methods. The coefficients of variation computed for the repeated measurements were also comparable for the VIBE (2.4%) and the DESS (4.8%) sequences. The carpus length averaged over the group was 37.5 ± 2.8 mm with a 7.45% between-subjects coefficient of variation. Of note, wrist cartilage CSA measured with either the VIBE or the DESS sequences was linearly related to the carpal bone length. The variability between subjects was significantly reduced to 8.4% when the CSA was normalized with respect to the carpal bone length. CONCLUSION: The ratio between wrist cartilage CSA and carpal bone length is a highly reproducible standardized measurement which normalizes the natural diversity between individuals.

2.
Am J Physiol Endocrinol Metab ; 306(10): E1110-9, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24644244

RESUMEN

Capsiate is known to increase whole body oxygen consumption possibly via the activation of uncoupling processes, but its effect at the skeletal muscle level remains poorly documented and conflicting. To clarify this issue, gastrocnemius muscle function and energetics were investigated in mice 2 h after a single intake of either vehicle (control) or purified capsiate (at 10 or 100 mg/kg body wt) through a multidisciplinary approach combining in vivo and in vitro measurements. Mechanical performance and energy pathway fluxes were assessed strictly noninvasively during a standardized electrostimulation-induced exercise, using an original device implementing 31-phosphorus magnetic resonance spectroscopy, and mitochondrial respiration was evaluated in isolated saponin-permeabilized fibers. Compared with control, both capsiate doses produced quantitatively similar effects at the energy metabolism level, including an about twofold decrease of the mitochondrial respiration sensitivity for ADP. Interestingly, they did not alter either oxidative phosphorylation or uncoupling protein 3 gene expression at rest. During 6 min of maximal repeated isometric contractions, both doses reduced the amount of ATP produced from glycolysis and oxidative phosphorylation but increased the relative contribution of oxidative phosphorylation to total energy turnover (+28 and +21% in the 10- and 100-mg groups, respectively). ATP cost of twitch force generation was further reduced in the 10- (-35%) and 100-mg (-45%) groups. Besides, the highest capsiate dose also increased the twitch force-generating capacity. These data present capsiate as a helpful candidate to enhance both muscle performance and oxidative phosphorylation during exercise, which could constitute a nutritional approach for improving health and preventing obesity and associated metabolic disorders.


Asunto(s)
Fenómenos Biomecánicos/efectos de los fármacos , Capsaicina/análogos & derivados , Metabolismo Energético/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Animales , Capsaicina/administración & dosificación , Células Cultivadas , Estimulación Eléctrica , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología
3.
J Alzheimers Dis ; 22(4): 1269-79, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20930281

RESUMEN

In the early stages of Alzheimer's disease (AD), neurofibrillary tangles develop in the mesial temporal lobe (MTL), first in the anterior subhippocampal (perirhinal/entorhinal) cortex and then in the hippocampal formation. This region plays a key role in visualrecognition memory (VRM). VRM has been reported to be impaired in patients with amnestic mild cognitive impairment (aMCI). The aim of the present study was to determine if an impairment of VRM is associated with metabolic changes in the MTL using magnetic resonance spectroscopic imaging and if evaluating VRM can contribute to the early diagnosis of AD. 28 patients with aMCI and 28 controls underwent a full neuropsychological assessment including an evaluation of VRM using the DMS48. NAA/mIno ratios, reduced in patients with AD and associated with the severity of pathological changes, were determined in the MTL. aMCI-patients were further divided into two subgroups according to their VRM performance. aMCI-patients showed decreased NAA/mIno levels in the right hippocampus compared with controls. aMCI-patients with impaired VRM showed decreased NAA/mIno ratios in the MTL bilaterally, including a region that sampled the left anterior subhippocampal cortex, compared to controls. No changes were found in aMCI patients with normal VRM. Performance on the DMS48 correlated with NAA/mIno levels in the anterior MTL. Clinical 6-year follow-up data (available for 78.6% of the aMCI-patients) indicates that impaired performance on the DMS48 could predict conversion to AD with a sensitivity and specificity of 81.8%. These findings provide further evidence that impaired VRM, as a hallmark of MTL dysfunction, may contribute to the early diagnosis of AD.


Asunto(s)
Amnesia/metabolismo , Trastornos del Conocimiento/metabolismo , Hipocampo/metabolismo , Reconocimiento en Psicología/fisiología , Lóbulo Temporal/metabolismo , Anciano , Anciano de 80 o más Años , Amnesia/diagnóstico , Amnesia/fisiopatología , Análisis de Varianza , Mapeo Encefálico , Trastornos del Conocimiento/diagnóstico , Trastornos del Conocimiento/fisiopatología , Femenino , Hipocampo/fisiopatología , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Estadísticas no Paramétricas , Lóbulo Temporal/fisiopatología
4.
J Appl Physiol (1985) ; 105(1): 299-307, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18450983

RESUMEN

Although the exact mechanisms are still unclear, it is commonly acknowledged that acute eccentric exercise alters muscle performance, whereas the repetition of successive bouts leads to the disappearance of the deleterious signs. To clarify this issue, we measured blood creatine kinase and lactate dehydrogenase activities and proton transverse relaxation time (T2) in various leg muscles 72 h after single and repeated bouts of exhausting downhill running sessions (-15 degrees , 1.5 km/h) with either 4 or 7 days elapsed between bouts. After a single exercise bout, T2 and enzyme activities initially increased and recovered rapidly. When exercise bouts were repeated over a short time period (4 days), initial changes did not recover and endurance time throughout additional exercise sessions was significantly reduced. On the contrary, with a longer resting time between exercises (7 days), the endurance time of additional running sessions was significantly longer and muscle changes (T2 increase, muscle edema, and enzyme activity changes) slowly and completely reversed. Significant correlations were found between T2 changes and enzyme activities. T2 changes in the soleus and gastrocnemius muscle heads were differently affected by lengthening contractions, suggesting a muscle specificity and indicating that muscle alterations might be linked to different anatomical properties, such as fiber pennation angles, typology, and/or the exhausting nature of the downhill running sessions. We documented a "less muscle injury" effect due to the repetition of exercise bouts at a low frequency (i.e., 1 session per week) in accordance with the delayed muscle inflammation. This effect was not observed when the between-exercise resting time was shorter.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Músculo Esquelético/lesiones , Músculo Esquelético/fisiología , Carrera/lesiones , Carrera/fisiología , Animales , Creatina Quinasa/metabolismo , Estimulación Eléctrica , Enzimas/sangre , Femenino , Miembro Posterior/fisiología , Procesamiento de Imagen Asistido por Computador , Contracción Isométrica/fisiología , L-Lactato Deshidrogenasa/metabolismo , Modelos Lineales , Músculo Esquelético/enzimología , Ratas , Ratas Sprague-Dawley
5.
MAGMA ; 21(3): 227-35, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18483819

RESUMEN

INTRODUCTION: Given that we have reached a point in the field of muscle energetics where absolute measurements are warranted to take the area forward, we designed an ergometer, including two force and two displacement transducers, allowing dynamic and isometric knee extension within a MR system and accurate measurements of power output. METHODS: On the basis of repeated measurements, the force and displacement transducers accuracy was 1% for values ranging from 0 to 394 N and 4% for values ranging from 0 to 20 cm. In addition, measurements were not affected by magnetic field. MRS experiments in exercising muscle were conducted in eight subjects. They performed two standardized dynamic alternate leg extension exercises (25 and 35% of MVC) while the corresponding metabolic changes were measured using (31)P-MRS. RESULTS: The mean power output produced during both exercises were 63 +/- 16 and 81 +/- 15 W while the eccentric work was reduced i.e. 12 +/- 14 and 21 +/- 6 W for the moderate and heavy exercise respectively. The corresponding metabolic changes were significant with a 20-40% PCr depletion and an end of exercise pH ranging from 0.02 to 0.70 pH units. CONCLUSION: Overall, the present ergometer allows quadriceps exercise in a MR system and should be useful for future metabolic studies for which reliable and absolute quantification of power output is warranted.


Asunto(s)
Ejercicio Físico/fisiología , Músculo Cuádriceps/fisiología , Ergometría/métodos , Humanos , Espectroscopía de Resonancia Magnética/métodos
6.
Behav Genet ; 36(5): 732-44, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16710778

RESUMEN

C57BL6J, FVB/N and 129/SvJ mice are commonly used as background strains to engineer genetic models of brain pathologies and psychiatric disorders. Magnetic resonance imaging (MRI) and spectroscopy provide alternative approaches to neuroanatomy, histology and neurohistochemistry for investigating the correlation between genes and brain neuroanatomy and neurometabolism in vivo. We used these techniques to non-invasively characterize the cerebral morphologic and metabolic endophenotypes of inbred mouse strains commonly used in neurological and behavioral research. We observed a great variability in the volume of ventricles and of structures involved in cognitive function (cerebellum and hippocampus) among these strains. In addition, distinct metabolic profiles were evidenced with variable levels of N-acetylaspartate, a neuronal marker, and of choline, a compound found in membranes and myelin. Besides, significant differences in high-energy phosphates and phospholipids were detected. Our findings demonstrate the great morphologic and metabolic heterogeneity among C57BL/ 6J, FVB/N and 129/SvJ mice. They emphasize the importance of selecting the appropriate genetic background for over-expressing or silencing a gene and provide some directions for modeling symptoms that characterize psychiatric disorders such as autism, schizophrenia and depression.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/metabolismo , Metabolismo/genética , Ratones Endogámicos/genética , Animales , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Fenotipo
7.
Eur J Radiol ; 57(2): 217-25, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16387464

RESUMEN

Cerebral maturation in the human fetal brain was investigated by in utero localized proton magnetic resonance spectroscopy (MRS). Spectra were acquired on a clinical MR system operating at 1.5 T. Body phased array coils (four coils) were used in combination with spinal coils (two coils). The size of the nominal volume of interest (VOI) was 4.5 cm(3) (20 mm x 15 mm x 15 mm). The MRS acquisitions were performed using a spin echo sequence at short and long echo times (TE = 30 ms and 135 ms) with a VOI located within the cerebral hemisphere at the level of the centrum semiovale. A significant reduction in myo-inositol and choline and an increase in N-acetylaspartate were observed with progressive age. The normal MR spectroscopy data reported here will help to determine whether brain metabolism is altered, especially when subtle anatomic changes are observed on conventional images. Some examples of impaired fetal brain development studied by MRS are illustrated.


Asunto(s)
Encéfalo/anomalías , Encéfalo/metabolismo , Desarrollo Fetal/fisiología , Feto/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Envejecimiento/fisiología , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/embriología , Colina/metabolismo , Creatina/metabolismo , Femenino , Feto/embriología , Humanos , Inositol/metabolismo , Modelos Lineales , Taurina/metabolismo , Ácido gamma-Aminobutírico/metabolismo
8.
J Appl Physiol (1985) ; 94(6): 2391-7, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12611771

RESUMEN

We used (31)P-magnetic resonance spectroscopy to study proton buffering in finger flexor muscles of eight healthy men (25-45 yr), during brief (18-s) voluntary finger flexion exercise (0.67-Hz contraction at 10% maximum voluntary contraction; 50/50 duty cycle) and 180-s recovery. Phosphocreatine (PCr) concentration fell 19 +/- 2% during exercise and then recovered with half time = 0.24 +/- 0.01 min. Cell pH rose by 0.058 +/- 0.003 units during exercise as a result of H(+) consumption by PCr splitting, which (assuming no lactate production or H(+) efflux) implies a plausible non-P(i) buffer capacity of 20 +/- 3 mmol. l intracellular water(-1). pH unit(-1). There was thus no evidence of significant glycogenolysis to lactate during exercise. Analysis of PCr kinetics as a classic linear response suggests that oxidative ATP synthesis reached 48 +/- 2% of ATP demand by the end of exercise; the rest was met by PCr splitting. Postexercise pH recovery was faster than predicted, suggesting "excess proton" production, with a peak value of 0.6 +/- 0.2 mmol/l intracellular water at 0.45 min of recovery, which might be due to, e.g., proton influx driven by cellular alkalinization, or a small glycolytic contribution to PCr resynthesis in recovery.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , Protones , Adulto , Dedos , Humanos , Concentración de Iones de Hidrógeno , Cinética , Masculino , Contracción Muscular/fisiología , Oxidación-Reducción , Fosfocreatina/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...