Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Circ Shock ; 35(4): 193-8, 1991 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-1777956

RESUMEN

Endothelial cells (EC) mediate many of the organ responses to shock. Much of our knowledge of EC are obtained from cell culture studies. However, compared to the dynamic milieu in vivo, the stationary environment for large-vessel EC may be artificial and inappropriate. In this study, the morphology, growth rate, and production of prostacyclin (PGI2) by EC obtained from different vascular beds under stationary and dynamic conditions were examined. EC were harvested from the thoracic aorta (Ao), pulmonary artery (PA), and vena cava (VC) of the same calves and exposed to 0.5 sec 24% deformation alternating with 0.5 sec relaxation (i.e., 60 cycles/min). Our results show that in response to the cyclic regimen, VCEC were elongated perpendicular to the force vector and their actin filaments aligned in the same direction, while AoEC and PAEC did not exhibit any morphological changes. The growth rate of AoEC (but not PAEC or VCEC) was significantly enhanced when stimulated by cyclic stretch. In addition, AoEC demonstrated an increased PGI2 synthetic activity with cyclic stretch, while PAEC and VCEC were unaltered. We conclude that the maintenance of EC phenotype and function is dependent on the hemodynamic milieu in vivo and may be influenced by the vascular origin of the cultured EC.


Asunto(s)
Endotelio Vascular/citología , Epoprostenol/metabolismo , Animales , Aorta , Bovinos , Polaridad Celular , Células Cultivadas , Endotelio Vascular/metabolismo , Fenotipo , Arteria Pulmonar , Estrés Mecánico , Vena Cava Inferior
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA