Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Sci Rep ; 14(1): 3000, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321133

RESUMEN

The clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted for age, age2, sex, series, time of infection, and the first ten principal components. We observed a genome-wide significant (P-value < 5.0 × 10-8) association of the rs117011822 variant, on chromosome 11, of rs7208524 on chromosome 17, approaching the genome-wide threshold (P-value = 5.19 × 10-8). A total of 113 variants were associated with survival at P-value < 1.0 × 10-5 and most of them regulated the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may modulate COVID-19 risk of death, possibly through the regulation of gene expression in immune response and lung function pathways.


Asunto(s)
COVID-19 , Humanos , Estudio de Asociación del Genoma Completo/métodos , Predisposición Genética a la Enfermedad , SARS-CoV-2 , Genotipo
4.
Biochem Pharmacol ; 220: 115969, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086489

RESUMEN

Flavonoids, ubiquitously distributed in the plant world, are regularly ingested with diets rich in fruit, vegetables, wine, and tea. During digestion, they are partially absorbed in the stomach. The present work aimed to assess the in vitro effects of quercetin and ten structurally related flavonoids on the rat gastric fundus smooth muscle, focussing on ATP-dependent K+ (Kir6.1) channels, which play a central role in the regulation of resting membrane potential, membrane excitability and, consequently, of gastric motility. Whole-cell currents through Kir6.1 channels (IKir6.1) were recorded with the patch-clamp technique and the mechanical activity of gastric fundus smooth muscle strips was studied under isometric conditions. Galangin ≈ tamarixetin > quercetin > kaempferol > isorhamnetin ≈ luteolin ≈ fisetin > (±)-taxifolin inhibited pinacidil-evoked, glibenclamide-sensitive IKir6.1 in a concentration-dependent manner. Morin, rutin, and myricetin were ineffective. The steric hindrance of the molecule and the number and position of hydroxyl groups on the B ring played an important role in the activity of the molecule. Molecular docking simulations revealed a possible binding site for flavonoids in the C-terminal domain of the Kir6.1 channel subunit SUR2B, in a flexible loop formed by residues 251 to 254 of chains C and D. Galangin and tamarixetin, but not rutin relaxed both high K+- and carbachol-induced contraction of fundus strips in a concentration-dependent manner. Furthermore, both flavonoids shifted to the right the concentration-relaxation curves to either pinacidil or L-cysteine constructed in strips pre-contracted by high K+, rutin being ineffective. In conclusion, IKir6.1 inhibition exerted by dietary flavonoids might counterbalance their myorelaxant activity, affect gastric accommodation or, at least, some stages of digestion.


Asunto(s)
Fundus Gástrico , Vasodilatadores , Ratas , Animales , Pinacidilo/farmacología , Vasodilatadores/farmacología , Fundus Gástrico/metabolismo , Quercetina/farmacología , Simulación del Acoplamiento Molecular , Canales de Potasio/metabolismo , Músculo Liso/metabolismo , Electrofisiología , Rutina , Dieta , Receptores de Sulfonilureas/metabolismo
5.
HLA ; 103(1): e15251, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37850268

RESUMEN

Extreme polymorphism of HLA and killer-cell immunoglobulin-like receptors (KIR) differentiates immune responses across individuals. Additional to T cell receptor interactions, subsets of HLA class I act as ligands for inhibitory and activating KIR, allowing natural killer (NK) cells to detect and kill infected cells. We investigated the impact of HLA and KIR polymorphism on the severity of COVID-19. High resolution HLA class I and II and KIR genotypes were determined from 403 non-hospitalized and 1575 hospitalized SARS-CoV-2 infected patients from Italy collected in 2020. We observed that possession of the activating KIR2DS4*001 allotype is associated with severe disease, requiring hospitalization (OR = 1.48, 95% CI 1.20-1.85, pc = 0.017), and this effect is greater in individuals homozygous for KIR2DS4*001 (OR = 3.74, 95% CI 1.75-9.29, pc = 0.003). We also observed the HLA class II allotype, HLA-DPB1*13:01 protects SARS-CoV-2 infected patients from severe disease (OR = 0.49, 95% CI 0.33-0.74, pc = 0.019). These association analyses were replicated using logistic regression with sex and age as covariates. Autoantibodies against IFN-α associated with COVID-19 severity were detected in 26% of 156 hospitalized patients tested. HLA-C*08:02 was more frequent in patients with IFN-α autoantibodies than those without, and KIR3DL1*01502 was only present in patients lacking IFN-α antibodies. These findings suggest that KIR and HLA polymorphism is integral in determining the clinical outcome following SARS-CoV-2 infection, by influencing the course both of innate and adaptive immunity.


Asunto(s)
COVID-19 , Cadenas beta de HLA-DP , Humanos , COVID-19/genética , SARS-CoV-2/genética , Alelos , Receptores KIR/genética , Genotipo , Autoanticuerpos/genética
6.
Cell Rep Med ; 4(9): 101152, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37572667

RESUMEN

Male sex represents one of the major risk factors for severe COVID-19 outcome. However, underlying mechanisms that mediate sex-dependent disease outcome are as yet unknown. Here, we identify the CYP19A1 gene encoding for the testosterone-to-estradiol metabolizing enzyme CYP19A1 (also known as aromatase) as a host factor that contributes to worsened disease outcome in SARS-CoV-2-infected males. We analyzed exome sequencing data obtained from a human COVID-19 cohort (n = 2,866) using a machine-learning approach and identify a CYP19A1-activity-increasing mutation to be associated with the development of severe disease in men but not women. We further analyzed human autopsy-derived lungs (n = 86) and detect increased pulmonary CYP19A1 expression at the time point of death in men compared with women. In the golden hamster model, we show that SARS-CoV-2 infection causes increased CYP19A1 expression in the lung that is associated with dysregulated plasma sex hormone levels and reduced long-term pulmonary function in males but not females. Treatment of SARS-CoV-2-infected hamsters with a clinically approved CYP19A1 inhibitor (letrozole) improves impaired lung function and supports recovery of imbalanced sex hormones specifically in males. Our study identifies CYP19A1 as a contributor to sex-specific SARS-CoV-2 disease outcome in males. Furthermore, inhibition of CYP19A1 by the clinically approved drug letrozole may furnish a new therapeutic strategy for individualized patient management and treatment.


Asunto(s)
Aromatasa , COVID-19 , Femenino , Humanos , Masculino , Aromatasa/genética , Letrozol , SARS-CoV-2 , COVID-19/genética , Estradiol , Testosterona
7.
Nat Commun ; 14(1): 3576, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328476

RESUMEN

Resource competition can be the cause of unintended coupling between co-expressed genetic constructs. Here we report the quantification of the resource load imposed by different mammalian genetic components and identify construct designs with increased performance and reduced resource footprint. We use these to generate improved synthetic circuits and optimise the co-expression of transfected cassettes, shedding light on how this can be useful for bioproduction and biotherapeutic applications. This work provides the scientific community with a framework to consider resource demand when designing mammalian constructs to achieve robust and optimised gene expression.


Asunto(s)
Mamíferos , Animales , Mamíferos/genética
9.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 45(1): 11-19, Jan.-Feb. 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1420538

RESUMEN

Objective: Bipolar disorder is a heritable chronic mental disorder that causes psychosocial impairment through depressive/manic episodes. Familial transmission of bipolar disorder does not follow simple Mendelian patterns of inheritance. The aim of this study was to describe a large family with 12 members affected by bipolar disorder. Whole-exome sequencing was performed for eight members, three of whom were diagnosed with bipolar disorder, and another reported as "borderline." Methods: Whole-exome sequencing data allowed us to select variants that the affected members had in common, including and excluding the "borderline" individual with moderate anxiety and obsessive-compulsive traits. Results: The results favored designating certain genes as predispositional to bipolar disorder: a heterozygous missense variant in CLN6 resulted in a "borderline" phenotype that, if combined with a heterozygous missense variant in ZNF92, is responsible for the more severe bipolar disorder phenotype. Both rare missense changes are predicted to disrupt protein function. Conclusions: Loss of both alleles in CLN6 causes neuronal ceroid lipofuscinosis, a severe progressive childhood neurological disorder. Our results indicate that heterozygous CLN6 carriers, previously reported as healthy, may be susceptible to bipolar disorder later in life if associated with additional variants in ZNF92.

10.
EBioMedicine ; 87: 104395, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36493725

RESUMEN

BACKGROUND: Neuroblastoma (NB) is the most common solid extracranial paediatric tumour. Genome-wide association studies have driven the discovery of common risk variants, but no large study has investigated the contribution of rare variants to NB susceptibility. Here, we conducted a whole-exome sequencing (WES) of 664 NB cases and 822 controls and used independent validation datasets to identify genes with rare risk variants and involved pathways. METHODS: WES was performed at 50× depth and variants were jointly called in cases and controls. We developed two models to identify mutations with high clinical impact (P/LP model) and to discover less penetrant risk mutations affecting non-canonical cancer pathways (RPV model). We performed a gene-level collapsing test using Firth's logistic regression in 242 selected cancer predisposition genes (CPGs) and a gene-sets burden analysis of biologically-informed pathways. FINDINGS: Twelve percent of patients carried P/LP variants in CPGs and showed a significant enrichment (P = 2.3 × 10-4) compared to controls (6%). We identified P/LP variants in 45 CPGs enriched in homologous recombination (HR) pathway. The most P/LP enriched genes in NB were BRCA1, ALK and RAD51C. Additionally, we found higher RPV burden in gene-sets of neuron differentiation, neural tube development and synapse assembly, and in gene-sets associated with neurodevelopmental disorders (NDD). INTERPRETATION: The high fraction of NB patients with P/LP variants indicates the need of genetic counselling. Furthermore, inherited rare variants predispose to NB development by affecting mechanisms related to HR and neurodevelopmental processes, and demonstrate that NDD genes are altered in NB at the germline level. FUNDING: Associazione Italiana per la Ricerca sul Cancro, Fondazione Italiana per la Lotta al Neuroblastoma, Associazione Oncologia Pediatrica e Neuroblastoma, Regione Campania, Associazione Giulio Adelfio onlus, and Italian Health Ministry.


Asunto(s)
Predisposición Genética a la Enfermedad , Neuroblastoma , Humanos , Niño , Estudio de Asociación del Genoma Completo , Mutación , Neuroblastoma/genética , Recombinación Homóloga
11.
Braz J Psychiatry ; 45(1): 11-19, 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35881528

RESUMEN

OBJECTIVE: Bipolar disorder is a heritable chronic mental disorder that causes psychosocial impairment through depressive/manic episodes. Familial transmission of bipolar disorder does not follow simple Mendelian patterns of inheritance. The aim of this study was to describe a large family with 12 members affected by bipolar disorder. Whole-exome sequencing was performed for eight members, three of whom were diagnosed with bipolar disorder, and another reported as "borderline." METHODS: Whole-exome sequencing data allowed us to select variants that the affected members had in common, including and excluding the "borderline" individual with moderate anxiety and obsessive-compulsive traits. RESULTS: The results favored designating certain genes as predispositional to bipolar disorder: a heterozygous missense variant in CLN6 resulted in a "borderline" phenotype that, if combined with a heterozygous missense variant in ZNF92, is responsible for the more severe bipolar disorder phenotype. Both rare missense changes are predicted to disrupt protein function. CONCLUSIONS: Loss of both alleles in CLN6 causes neuronal ceroid lipofuscinosis, a severe progressive childhood neurological disorder. Our results indicate that heterozygous CLN6 carriers, previously reported as healthy, may be susceptible to bipolar disorder later in life if associated with additional variants in ZNF92.


Asunto(s)
Trastorno Bipolar , Lipofuscinosis Ceroideas Neuronales , Humanos , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/diagnóstico , Lipofuscinosis Ceroideas Neuronales/genética
12.
J Chem Inf Model ; 63(1): 251-258, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36512342

RESUMEN

Fast C-type inactivation confers distinctive functional properties to the hERG potassium channel, and its association to inherited and acquired cardiac arrythmias makes the study of the inactivation mechanism of hERG at the atomic detail of paramount importance. At present, two models have been proposed to describe C-type inactivation in K+-channels. Experimental data and computational work on the bacterial KcsA channel support the hypothesis that C-type inactivation results from a closure of the selectivity filter that sterically impedes ion conduction. Alternatively, recent experimental structures of a mutated Shaker channel revealed a widening of the extracellular portion of the selectivity filter, which might diminish conductance by interfering with the mechanism of ion permeation. Here, we performed molecular dynamics simulations of the wild-type hERG, a non-inactivating mutant (hERG-N629D), and a mutant that inactivates faster than the wild-type channel (hERG-F627Y) to find out which and if any of the two reported C-type inactivation mechanisms applies to hERG. Closure events of the selectivity filter were not observed in any of the simulated trajectories but instead, the extracellular section of the selectivity filter deviated from the canonical conductive structure of potassium channels. The degree of widening of the potassium binding sites at the extracellular entrance of the channel was directly related to the degree of inactivation with hERG-F627Y > wild-type hERG > hERG-N629D. These findings support the hypothesis that C-type inactivation in hERG entails a widening of the extracellular entrance of the channel rather than a closure of the selectivity filter.


Asunto(s)
Canales de Potasio Éter-A-Go-Go , Simulación de Dinámica Molecular , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/genética , Potasio/química
14.
Cells ; 11(24)2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36552859

RESUMEN

Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19.


Asunto(s)
COVID-19 , Fibrosis Quística , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Alelos , Fibrosis Quística/patología , COVID-19/genética , Heterocigoto
16.
PLoS Genet ; 18(11): e1010367, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36327219

RESUMEN

Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75-10.05, p = 5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.


Asunto(s)
COVID-19 , Exoma , Humanos , Exoma/genética , Estudio de Asociación del Genoma Completo , COVID-19/genética , Predisposición Genética a la Enfermedad , Receptor Toll-Like 7/genética , SARS-CoV-2/genética
17.
Commun Biol ; 5(1): 1133, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289370

RESUMEN

We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as "Respiratory or thoracic disease", supporting their link with COVID-19 severity outcome.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Secuenciación del Exoma , Fenotipo
18.
Front Mol Neurosci ; 15: 877258, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782384

RESUMEN

Whole exome sequencing has provided significant opportunities to discover novel candidate genes for intellectual disability and autism spectrum disorders. Variants in the spectrin genes SPTAN1, SPTBN1, SPTBN2, and SPTBN4 have been associated with neurological disorders; however, SPTBN5 gene-variants have not been associated with any human disorder. This is the first report that associates SPTBN5 gene variants (ENSG00000137877: c.266A>C; p.His89Pro, c.9784G>A; p.Glu3262Lys, c.933C>G; p.Tyr311Ter, and c.8809A>T; p.Asn2937Tyr) causing neurodevelopmental phenotypes in four different families. The SPTBN5-associated clinical traits in our patients include intellectual disability (mild to severe), aggressive tendencies, accompanied by variable features such as craniofacial and physical dysmorphisms, autistic behavior, and gastroesophageal reflux. We also provide a review of the existing literature related to other spectrin genes, which highlights clinical features partially overlapping with SPTBN5.

19.
Viruses ; 14(6)2022 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-35746657

RESUMEN

Thrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities, belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13 (A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such as Caplacizumab, which inhibits vWF-platelet interaction, and Crizanlizumab, which, by inhibiting P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site of vascular damage.


Asunto(s)
COVID-19 , Púrpura Trombocitopénica Trombótica , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAMTS13/genética , COVID-19/genética , Humanos , Púrpura Trombocitopénica Trombótica/diagnóstico , Púrpura Trombocitopénica Trombótica/genética , SARS-CoV-2/patogenicidad , Factor de von Willebrand/química , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
20.
Cell Syst ; 13(8): 598-614.e6, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35690068

RESUMEN

The determinants of severe COVID-19 in healthy adults are poorly understood, which limits the opportunity for early intervention. We present a multiomic analysis using machine learning to characterize the genomic basis of COVID-19 severity. We use single-cell multiome profiling of human lungs to link genetic signals to cell-type-specific functions. We discover >1,000 risk genes across 19 cell types, which account for 77% of the SNP-based heritability for severe disease. Genetic risk is particularly focused within natural killer (NK) cells and T cells, placing the dysfunction of these cells upstream of severe disease. Mendelian randomization and single-cell profiling of human NK cells support the role of NK cells and further localize genetic risk to CD56bright NK cells, which are key cytokine producers during the innate immune response. Rare variant analysis confirms the enrichment of severe-disease-associated genetic variation within NK-cell risk genes. Our study provides insights into the pathogenesis of severe COVID-19 with potential therapeutic targets.


Asunto(s)
COVID-19 , Adulto , Antígeno CD56/análisis , Antígeno CD56/metabolismo , COVID-19/genética , Citocinas/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Células Asesinas Naturales/química , Células Asesinas Naturales/metabolismo , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...