Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Environ Sci Technol ; 58(5): 2468-2478, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38252456

RESUMEN

Wastewater is a source for many contaminants of emerging concern (CECs), and surface waters receiving wastewater discharge often serve as source water for downstream drinking water treatment plants. Nontargeted analysis and suspect screening methods were used to characterize chemicals in residence-time-weighted grab samples and companion polar organic chemical integrative samplers (POCIS) collected on three separate hydrologic sampling events along a surface water flow path representative of de facto water reuse. The goal of this work was to examine the fate of CECs along the study flow path as water is transported from wastewater effluent through drinking water treatment. Grab and POCIS samples provided a comparison between residence-time-weighted single-point and integrative sample results. This unique and rigorous study design, coupled with advanced analytical chemistry tools, provided important insights into chemicals found in drinking water and their potential sources, which can be used to help prioritize chemicals for further study. K-means clustering analysis was used to identify patterns in chemical occurrences across both sampling sites and sampling events. Chemical features that occurred frequently or survived drinking water treatment were prioritized for identification, resulting in the probable identification of over 100 CECs in the watershed and 28 CECs in treated drinking water.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Agua Potable/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Compuestos Orgánicos/análisis
2.
Geohealth ; 7(12): e2022GH000716, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38155731

RESUMEN

The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.

3.
Environ Toxicol Chem ; 41(9): 2221-2239, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35852176

RESUMEN

In a study of 44 diverse sampling sites across 16 Great Lakes tributaries, 110 pharmaceuticals were detected of 257 monitored. The present study evaluated the ecological relevance of detected chemicals and identified heavily impacted areas to help inform resource managers and guide future investigations. Ten pharmaceuticals (caffeine, nicotine, albuterol, sulfamethoxazole, venlafaxine, acetaminophen, carbamazepine, gemfibrozil, metoprolol, and thiabendazole) were distinguished as having the greatest potential for biological effects based on comparison to screening-level benchmarks derived using information from two biological effects databases, the ECOTOX Knowledgebase and the ToxCast database. Available evidence did not suggest substantial concern for 75% of the monitored pharmaceuticals, including 147 undetected pharmaceuticals and 49 pharmaceuticals with screening-level alternative benchmarks. However, because of a lack of biological effects information, screening values were not available for 51 detected pharmaceuticals. Samples containing the greatest pharmaceutical concentrations and having the highest detection frequencies were from Lake Erie, southern Lake Michigan, and Lake Huron tributaries. Samples collected during low-flow periods had higher pharmaceutical concentrations than those collected during increased-flow periods. The wastewater-treatment plant effluent content in streams correlated positively with pharmaceutical concentrations. However, deviation from this correlation demonstrated that secondary factors, such as multiple pharmaceutical sources, were likely present at some sites. Further research could investigate high-priority pharmaceuticals as well as those for which alternative benchmarks could not be developed. Environ Toxicol Chem 2022;41:2221-2239. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Lagos/química , Preparaciones Farmacéuticas , Ríos/química , Contaminantes Químicos del Agua/análisis
4.
Talanta ; 228: 122139, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33773706

RESUMEN

Spike- and blank-based procedures were applied to estimate the detection limits (DLs) for example analytes from inorganic and organic methods for water samples to compare with the U.S. Environmental Protection Agency's (EPA) Method Detection Limit (MDL) procedures (revisions 1.11 and 2.0). The multi-concentration spike-based procedures ASTM Within-laboratory Critical Level (DQCALC) and EPA's Lowest Concentration Minimum Reporting Level were compared in one application, with DQCALC further applied to many methods. The blank-based DLs, MDLb99 (99th percentile) or MDLbY (= mean blank concentration + s × t), estimated using large numbers (>100) of blank samples often provide DLs that better approach or achieve the desired ≤1% false positive risk level compared to spike-based DLs. For primarily organic methods that do not provide many uncensored blank results, spike-based DQCALC or MDL rev. 2.0 are needed to simulate the blank distribution and estimate the DL. DQCALC is especially useful for estimating DLs for multi-analyte methods having very different analyte response characteristics. Time series plots of DLs estimated using different procedures reveal that DLs are dependent on the applied procedure, should not be expected to be static over time, and seem best viewed as falling over a range versus being a single value. Use of both blank- and spike-based DL procedures help inform this DL range. Data reporting conventions that censor data at a threshold and report "less than" that threshold concentration as the reporting level have unknown and potentially high false negative risk. The U.S. Geological Survey National Water Quality Laboratory's Laboratory Reporting Level (LRL) convention (applied primarily to organic methods) attempts to simultaneously minimize both the false positive and false negative risk when 

5.
Environ Sci Technol ; 54(11): 6703-6712, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32343558

RESUMEN

To improve the performance of polymeric electrospun nanofiber mats (ENMs) for equilibrium passive sampling applications in water, we integrated two types of multiwalled carbon nanotubes (CNTs; with and without surface carboxyl groups) into polyacrylonitrile (PAN) and polystyrene (PS) ENMs. For 11 polar and moderately hydrophobic compounds (-0.07 ≤ logKOW ≤ 3.13), 90% of equilibrium uptake was achieved in under 0.8 days (t90% values) in nonmixed ENM-CNT systems. Sorption capacity of ENM-CNTs was between 2- and 50-fold greater than pure polymer ENMs, with equilibrium partition coefficients (KENM-W values) ranging from 1.4 to 3.1 log units (L/kg) depending on polymer type (hydrophilic PAN or hydrophobic PS), CNT loading (i.e., values increased with weight percent (wt %) of CNTs), and CNT type (i.e., greater uptake with carboxylated CNTs composites). During field deployment at Muddy Creek in North Liberty, Iowa, optimal ENM-CNTs (PAN with 20 wt % carboxylated CNTs) yielded atrazine concentrations in surface water with a 40% difference relative to analysis of a same-day grab sample. We also observed a mean percent difference of 30 (±20)% when comparing ENM-CNT sampler results to grab sample data collected within 1 week of deployment. With their rapid, high capacity uptake and small material footprint, ENM-CNT equilibrium passive samplers represent a promising alternative to complement traditional integrative passive samplers while offering convenience over large volume grab sampling.


Asunto(s)
Nanofibras , Nanotubos de Carbono , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Iowa , Polímeros , Contaminantes Químicos del Agua/análisis
6.
Sci Total Environ ; 699: 134297, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31683213

RESUMEN

Although endocrine disrupting compounds have been detected in wastewater and surface waters worldwide using a variety of in vitro effects-based screening tools, e.g. bioassays, few have examined potential attenuation of environmental contaminants by both natural (sorption, degradation, etc.) and anthropogenic (water treatment practices) processes. This study used several bioassays and quantitative chemical analyses to assess residence-time weighted samples at six sites along a river in the northeastern United States beginning upstream from a wastewater treatment plant outfall and proceeding downstream along the stream reach to a drinking water treatment plant. Known steroidal estrogens were quantified and changes in signaling pathway molecular initiating events (activation of estrogen, androgen, glucocorticoid, peroxisome proliferator-activated, pregnane X receptor, and aryl hydrocarbon receptor signaling networks) were identified in water extracts. In initial multi-endpoint assays geographic and receptor-specific endocrine activity patterns in transcription factor signatures and nuclear receptor activation were discovered. In subsequent single endpoint receptor-specific bioassays, estrogen (16 of 18 samples; 0.01 to 28 ng estradiol equivalents [E2Eqs]/L) glucocorticoid (3 of 18 samples; 1.8 to 21 ng dexamethasone equivalents [DexEqs]/L), and androgen (2 of 18 samples; 0.95 to 2.1 ng dihydrotestosterone equivalents [DHTEqs]/L) receptor transcriptional activation occurred above respective assay method detection limits (0.04 ng E2Eqs/L, 1.2 ng DexEqs/L, and 0.77 ng DHTEqs/L) in multiple sampling events. Estrogen activity, the most often detected, correlated well with measured concentrations of known steroidal estrogens (r2 = 0.890). Overall, activity indicative of multiple types of endocrine active compounds was highest in wastewater effluent samples, while activity downstream was progressively lower, and negligible in unfinished treated drinking water. Not only was estrogenic and glucocorticoid activity confirmed in the effluent by utilizing multiple methods concurrently, but other activated signaling networks that historically received less attention (i.e. peroxisome proliferator-activated receptor) were also detected.


Asunto(s)
Bioensayo , Disruptores Endocrinos/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Andrógenos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Estradiol , Estrógenos , Estrona , New England , Receptores de Hidrocarburo de Aril , Ríos , Aguas Residuales/química , Purificación del Agua
7.
Environ Sci Technol ; 53(17): 10070-10081, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31432661

RESUMEN

Increasing global reliance on stormwater control measures to reduce discharge to surface water, increase groundwater recharge, and minimize contaminant delivery to receiving waterbodies necessitates improved understanding of stormwater-contaminant profiles. A multiagency study of organic and inorganic chemicals in urban stormwater from 50 runoff events at 21 sites across the United States demonstrated that stormwater transports substantial mixtures of polycyclic aromatic hydrocarbons, bioactive contaminants (pesticides and pharmaceuticals), and other organic chemicals known or suspected to pose environmental health concern. Numerous organic-chemical detections per site (median number of chemicals detected = 73), individual concentrations exceeding 10 000 ng/L, and cumulative concentrations up to 263 000 ng/L suggested concern for potential environmental effects during runoff events. Organic concentrations, loads, and yields were positively correlated with impervious surfaces and highly developed urban catchments. Episodic storm-event organic concentrations and loads were comparable to and often exceeded those of daily wastewater plant discharges. Inorganic chemical concentrations were generally dilute in concentration and did not exceed chronic aquatic life criteria. Methylmercury was measured in 90% of samples with concentrations that ranged from 0.05 to 1.0 ng/L.


Asunto(s)
Agua Subterránea , Plaguicidas , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Lluvia , Estados Unidos
8.
Environ Sci Technol ; 53(6): 2950-2960, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30834750

RESUMEN

This is the first large-scale, systematic assessment of hormone and pharmaceutical occurrence in groundwater used for drinking across the United States. Samples from 1091 sites in Principal Aquifers representing 60% of the volume pumped for drinking-water supply had final data for 21 hormones and 103 pharmaceuticals. At least one compound was detected at 5.9% of 844 sites representing the resource used for public supply across the entirety of 15 Principal Aquifers, and at 11.3% of 247 sites representing the resource used for domestic supply over subareas of nine Principal Aquifers. Of 34 compounds detected, one plastics component (bisphenol A), three pharmaceuticals (carbamazepine, sulfamethoxazole, and meprobamate), and the caffeine degradate 1,7-dimethylxanthine were detected in more than 0.5% of samples. Hydrocortisone had a concentration greater than a human-health benchmark at 1 site. Compounds with high solubility and low Koc were most likely to be detected. Detections were most common in shallow wells with a component of recent recharge, particularly in crystalline-rock and mixed land-use settings. Results indicate vulnerability of groundwater used for drinking water in the U.S. to contamination by these compounds is generally limited, and exposure to these compounds at detected concentrations is unlikely to have adverse effects on human health.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Humanos , Estados Unidos , Abastecimiento de Agua
9.
Sci Total Environ ; 653: 359-369, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30412881

RESUMEN

Contaminants of emerging concern (CECs), including per- and polyfluoroalkyl substances (PFAS), are of interest to regulators, water treatment utilities, the general public and scientists. This study measured 17 PFAS in source and treated water from 25 drinking water treatment plants (DWTPs) as part of a broader study of CECs in drinking water across the United States. PFAS were quantitatively detected in all 50 samples, with summed concentrations of the 17 PFAS ranging from <1 ng/L to 1102 ng/L. The median total PFAS concentration was 21.4 ng/L in the source water and 19.5 ng/L in the treated drinking water. Comparing the total PFAS concentration in source and treated water at each location, only five locations demonstrated statistically significant differences (i.e. P < 0.05) between the source and treated water. When the perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) concentrations in the treated drinking water are compared to the existing US Environmental Protection Agency's PFOA and PFOS drinking water heath advisory of 70 ng/L for each chemical or their sum one DWTP exceeded the threshold. Six of the 25 DWTPs were along two large rivers. The DWTPs within each of the river systems had specific PFAS profiles, with the three DWTPs from one river being dominated by PFOA, while three DWTPs on the second river were dominated by perfluorobutyric acid (PFBA).


Asunto(s)
Agua Potable/análisis , Monitoreo del Ambiente , Fluorocarburos/análisis , Agua Subterránea/análisis , Ríos , Contaminantes Químicos del Agua/análisis , Estados Unidos , Purificación del Agua
10.
Environ Sci Technol ; 52(23): 13972-13985, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30460851

RESUMEN

Safe drinking water at the point-of-use (tapwater, TW) is a United States public health priority. Multiple lines of evidence were used to evaluate potential human health concerns of 482 organics and 19 inorganics in TW from 13 (7 public supply, 6 private well self-supply) home and 12 (public supply) workplace locations in 11 states. Only uranium (61.9 µg L-1, private well) exceeded a National Primary Drinking Water Regulation maximum contaminant level (MCL: 30 µg L-1). Lead was detected in 23 samples (MCL goal: zero). Seventy-five organics were detected at least once, with median detections of 5 and 17 compounds in self-supply and public supply samples, respectively (corresponding maxima: 12 and 29). Disinfection byproducts predominated in public supply samples, comprising 21% of all detected and 6 of the 10 most frequently detected. Chemicals designed to be bioactive (26 pesticides, 10 pharmaceuticals) comprised 48% of detected organics. Site-specific cumulative exposure-activity ratios (∑EAR) were calculated for the 36 detected organics with ToxCast data. Because these detections are fractional indicators of a largely uncharacterized contaminant space, ∑EAR in excess of 0.001 and 0.01 in 74 and 26% of public supply samples, respectively, provide an argument for prioritized assessment of cumulative effects to vulnerable populations from trace-level TW exposures.


Asunto(s)
Agua Potable , Plaguicidas , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Humanos , Estados Unidos , Abastecimiento de Agua , Lugar de Trabajo
11.
Water Res ; 145: 198-209, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30142518

RESUMEN

Cell-based metabolomics was used in a proof-of-concept fashion to investigate the biological effects of contaminants as they traveled from a wastewater treatment plant (WWTP) discharge to a drinking water treatment plant (DWTP) intake in a surface-water usage cycle. Zebrafish liver (ZFL) cells were exposed to water samples collected along a surface-water flowpath, where a WWTP was located ∼14.5 km upstream of a DWTP. The sampling sites included: 1) upstream of the WWTP, 2) the WWTP effluent discharging point, 3) a proximal location downstream of the WWTP outfall, 4) a distal location downstream of the WWTP outfall, 5) the drinking water intake, and 6) the treated drinking water collected prior to discharge to the distribution system. After a 48-h laboratory exposure, the hydrophilic and lipophilic metabolites in ZFL cell extracts were analyzed by proton nuclear magnetic resonance (1H NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS), respectively. Multivariate statistical analysis revealed distinct changes in metabolite profiles in response to WWTP effluent exposure. These effects on the hydrophilic metabolome gradually diminished downstream of the WWTP, becoming non-significant at the drinking water intake (comparable to upstream of the WWTP, p = 0.98). However, effects on the lipophilic metabolome increased significantly as the river flowed from the distal location downstream of the WWTP to the drinking water intake (p < 0.001), suggesting a source of bioactive compounds in this watershed other than the WWTP. ZFL cells exposed to treated drinking water did not exhibit significant changes in either the hydrophilic (p = 0.15) or lipophilic metabolome (p = 0.83) compared to the upstream site, suggesting that constituents in the WWTP effluent were efficiently removed by the drinking water treatment process. Impacts on ZFL cells from the WWTP effluent included disrupted energy metabolism, a global decrease in amino acids, and altered lipid metabolism pathways. Overall, this study demonstrated the utility of cell-based metabolomics as an effective tool for assessing the biological effects of complex pollutant mixtures, particularly when used as a complement to conventional chemical monitoring.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Hígado , Metabolómica , Eliminación de Residuos Líquidos , Aguas Residuales , Pez Cebra
12.
Environ Pollut ; 242(Pt B): 2068-2077, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30076053

RESUMEN

Urban development has led to an increase in urban runoff, accompanied with a decrease in water quality during rain events. One of the major causes of the decrease in water quality is the presence of trace organic contaminants in urban runoff. However, little is known about the sources of organic contaminants in urban runoff, especially related to land-use and temporal trends in those associated land uses. The objective of this study was to assess the occurrence and concentration trends of organic contaminants for a high-density residential site and commercial strip site in Madison, WI. Flow-weighted samples of urban stormwater runoff, collected with an auto-sampler, were composited and analyzed, producing mean organic contaminants concentrations for each storm event. The contaminants, which include pesticides, flame retardants, polycyclic aromatic hydrocarbons, corrosion inhibitors, among others, were extracted and analyzed by gas chromatography coupled with mass spectrometry or liquid chromatography coupled with tandem mass spectrometry. There were 30 organic contaminants that had greater than 50% detections in at least one of the sites, and those organic contaminants did provide information on similarities and differences of organic contaminants in urban runoff derived from different land uses. The sum of the total measured pesticides showed no significant difference between sites; this was likely due to the considerable green space and associated pesticide use in both sites. However, there were higher total concentrations of organophosphate flame retardants and corrosion inhibitors in the residential site. The reason for this is unknown and will require follow-up studies; however, several hypotheses are presented. Conversely, there were higher total concentrations of polycyclic aromatic hydrocarbons in the commercial site; this is most likely due to higher vehicle traffic in the commercial site. These data show that land-use may be important in determining the composition and concentrations of trace organic contaminants in urban stormwater runoff.


Asunto(s)
Monitoreo del Ambiente/métodos , Compuestos Orgánicos/análisis , Contaminantes Químicos del Agua/análisis , Cromatografía de Gases y Espectrometría de Masas , Plaguicidas/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Lluvia/química
13.
Environ Sci Technol ; 52(13): 7513-7523, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29901991

RESUMEN

Anthropogenic chemicals have been proposed as potential markers of human fecal contamination in recreational water. However, to date, there are no published studies describing their relationships with illness risks. Using a cohort of swimmers at seven U.S. beaches, we examined potential associations between the presence of chemical markers of human fecal pollution and self-reported gastrointestinal (GI) illness, diarrhea, and respiratory illness. Swimmers were surveyed about their beach activities, water exposure, and baseline symptoms on the day of their beach visit, and about any illness experienced 10-12 days later. Risk differences were estimated using model-based standardization and adjusted for the swimmer's age, beach site, sand contact, rainfall, and water temperature. Sixty-two chemical markers were analyzed from daily water samples at freshwater and marine beaches. Of those, 20 were found consistently. With the possible exception of bisphenol A and cholesterol, no chemicals were consistently associated with increased risks of illness. These two chemicals were suggestively associated with 2% and 1% increased risks of GI illness and diarrhea in both freshwater and marine beaches. Additional research using the more sensitive analytic methods currently available for a wider suite of analytes is needed to support the use of chemical biomarkers to quantify illness risk and identify fecal pollution sources.


Asunto(s)
Playas , Microbiología del Agua , Biomarcadores , Heces , Humanos , Autoinforme
14.
Sci Total Environ ; 619-620: 1330-1339, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29734610

RESUMEN

Drinking water treatment plants rely on purification of contaminated source waters to provide communities with potable water. One group of possible contaminants are enteric viruses. Measurement of viral quantities in environmental water systems are often performed using polymerase chain reaction (PCR) or quantitative PCR (qPCR). However, true values may be underestimated due to challenges involved in a multi-step viral concentration process and due to PCR inhibition. In this study, water samples were concentrated from 25 drinking water treatment plants (DWTPs) across the US to study the occurrence of enteric viruses in source water and removal after treatment. The five different types of viruses studied were adenovirus, norovirus GI, norovirus GII, enterovirus, and polyomavirus. Quantitative PCR was performed on all samples to determine presence or absence of these viruses in each sample. Ten DWTPs showed presence of one or more viruses in source water, with four DWTPs having treated drinking water testing positive. Furthermore, PCR inhibition was assessed for each sample using an exogenous amplification control, which indicated that all of the DWTP samples, including source and treated water samples, had some level of inhibition, confirming that inhibition plays an important role in PCR-based assessments of environmental samples. PCR inhibition measurements, viral recovery, and other assessments were incorporated into a Bayesian model to more accurately determine viral load in both source and treated water. Results of the Bayesian model indicated that viruses are present in source water and treated water. By using a Bayesian framework that incorporates inhibition, as well as many other parameters that affect viral detection, this study offers an approach for more accurately estimating the occurrence of viral pathogens in environmental waters.


Asunto(s)
Agua Potable/virología , Monitoreo del Ambiente , Modelos Estadísticos , Contaminación del Agua/estadística & datos numéricos , Teorema de Bayes , Estados Unidos , Microbiología del Agua , Purificación del Agua/estadística & datos numéricos
15.
Sci Total Environ ; 636: 69-79, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-29704718

RESUMEN

Discharges from pharmaceutical manufacturing facilities (PMFs) previously have been identified as important sources of pharmaceuticals to the environment. Yet few studies are available to establish the influence of PMFs on the pharmaceutical source contribution to wastewater treatment plants (WWTPs) and waterways at the national scale. Consequently, a national network of 13 WWTPs receiving PMF discharges, six WWTPs with no PMF input, and one WWTP that transitioned through a PMF closure were selected from across the United States to assess the influence of PMF inputs on pharmaceutical loading to WWTPs. Effluent samples were analyzed for 120 pharmaceuticals and pharmaceutical degradates. Of these, 33 pharmaceuticals had concentrations substantially higher in PMF-influenced effluent (maximum 555,000 ng/L) compared to effluent from control sites (maximum 175 ng/L). Concentrations in WWTP receiving PMF input are variable, as discharges from PMFs are episodic, indicating that production activities can vary substantially over relatively short (several months) periods and have the potential to rapidly transition to other pharmaceutical products. Results show that PMFs are an important, national-scale source of pharmaceuticals to the environment.


Asunto(s)
Monitoreo del Ambiente , Preparaciones Farmacéuticas/análisis , Aguas Residuales/estadística & datos numéricos , Contaminantes Químicos del Agua/análisis , Industria Farmacéutica/estadística & datos numéricos , Humanos , Instalaciones Industriales y de Fabricación , Estados Unidos , Eliminación de Residuos Líquidos/estadística & datos numéricos
16.
Environ Pollut ; 236: 718-733, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29454282

RESUMEN

The Laurentian Great Lakes are a valuable natural resource that is affected by contaminants of emerging concern (CECs), including sex steroid hormones, personal care products, pharmaceuticals, industrial chemicals, and new generation pesticides. However, little is known about the fate and biological effects of CECs in tributaries to the Great Lakes. In the current study, 16 sites on three rivers in the Great Lakes basin (Fox, Cuyahoga, and Raquette Rivers) were assessed for CEC presence using polar organic chemical integrative samplers (POCIS) and grab water samplers. Biological activity was assessed through a combination of in vitro bioassays (focused on estrogenic activity) and in vivo assays with larval fathead minnows. In addition, resident sunfish, largemouth bass, and white suckers were assessed for changes in biological endpoints associated with CEC exposure. CECs were present in all water samples and POCIS extracts. A total of 111 and 97 chemicals were detected in at least one water sample and POCIS extract, respectively. Known estrogenic chemicals were detected in water samples at all 16 sites and in POCIS extracts at 13 sites. Most sites elicited estrogenic activity in bioassays. Ranking sites and rivers based on water chemistry, POCIS chemistry, or total in vitro estrogenicity produced comparable patterns with the Cuyahoga River ranking as most and the Raquette River as least affected by CECs. Changes in biological responses grouped according to physiological processes, and differed between species but not sex. The Fox and Cuyahoga Rivers often had significantly different patterns in biological response Our study supports the need for multiple lines of evidence and provides a framework to assess CEC presence and effects in fish in the Laurentian Great Lakes basin.


Asunto(s)
Monitoreo del Ambiente , Lagos/química , Contaminantes Químicos del Agua/toxicidad , Animales , Cyprinidae , Estrona , Compuestos Orgánicos/análisis , Plaguicidas/análisis , Ríos , Contaminantes Químicos del Agua/análisis
17.
J Am Water Works Assoc ; 110(4): E2-E18, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36999079

RESUMEN

De facto reuse is the percentage of drinking water treatment plant (DWTP) intake potentially composed of effluent discharged from upstream wastewater treatment plants (WWTPs). Results from grab samples and a De Facto Reuse in our Nation's Consumable Supply (DRINCS) geospatial watershed model were used to quantify contaminants of emerging concern (CECs) concentrations at DWTP intakes to qualitatively compare exposure risks obtained by the two approaches. Between nine and 71 CECs were detected in grab samples. The number of upstream WWTP discharges ranged from 0 to >1,000; comparative de facto reuse results from DRINCS ranged from <0.1 to 13% during average flow and >80% during lower streamflows. Correlation between chemicals detected and DRINCS modeling results were observed, particularly DWTPs withdrawing from midsize water bodies. This comparison advances the utility of DRINCS to identify locations of DWTPs for future CEC sampling and treatment technology testing.

18.
Environ Toxicol Chem ; 36(10): 2823-2832, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28477358

RESUMEN

Prioritization methodologies are often used for identifying those pharmaceuticals that pose the greatest risk to the natural environment and to focus laboratory testing or environmental monitoring toward pharmaceuticals of greatest concern. Risk-based prioritization approaches, employing models to derive exposure concentrations, are commonly used, but the reliability of these models is unclear. The present study evaluated the accuracy of exposure models commonly used for pharmaceutical prioritization. Targeted monitoring was conducted for 95 pharmaceuticals in the Rivers Foss and Ouse in the City of York (UK). Predicted environmental concentration (PEC) ranges were estimated based on localized prescription, hydrological data, reported metabolism, and wastewater treatment plant (WWTP) removal rates, and were compared with measured environmental concentrations (MECs). For the River Foss, PECs, obtained using highest metabolism and lowest WWTP removal, were similar to MECs. In contrast, this trend was not observed for the River Ouse, possibly because of pharmaceutical inputs unaccounted for by our modeling. Pharmaceuticals were ranked by risk based on either MECs or PECs. With 2 exceptions (dextromethorphan and diphenhydramine), risk ranking based on both MECs and PECs produced similar results in the River Foss. Overall, these findings indicate that PECs may well be appropriate for prioritization of pharmaceuticals in the environment when robust and local data on the system of interest are available and reflective of most source inputs. Environ Toxicol Chem 2017;36:2823-2832. © 2017 SETAC.


Asunto(s)
Monitoreo del Ambiente , Preparaciones Farmacéuticas/análisis , Ríos/química , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis , Cromatografía Líquida de Alta Presión , Límite de Detección , Modelos Teóricos , Preparaciones Farmacéuticas/química , Medición de Riesgo , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/química
19.
Environ Sci Technol ; 51(9): 4792-4802, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28401767

RESUMEN

Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66-84% of all sites. Detected contaminant concentrations varied from less than 1 ng L-1 to greater than 10 µg L-1, with 77 and 278 having median detected concentrations greater than 100 ng L-1 and 10 ng L-1, respectively. Cumulative detections and concentrations ranged 4-161 compounds (median 70) and 8.5-102 847 ng L-1, respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log10 concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71-82% of the variability in the total number of compounds detected (linear regression; p-values: < 0.001-0.012), providing a statistical inference tool for unmonitored contaminants. Due to multiple modes of action, high bioactivity, biorecalcitrance, and direct environment application (pesticides), designed-bioactive organics (median 41 per site at µg L-1 cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L-1.


Asunto(s)
Ríos/química , Contaminantes Químicos del Agua , Cloropirifos/toxicidad , Monitoreo del Ambiente , Plaguicidas , Aguas Residuales/química
20.
Environ Sci Technol ; 51(8): 4434-4444, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28319370

RESUMEN

The increasing use of pharmaceuticals has led to their subsequent input into and release from wastewater treatment plants, with corresponding discharge into surface waters that may subsequently exert adverse effects upon aquatic organisms. Although the distribution of pharmaceuticals in surface water has been extensively studied, the details of uptake, internal distribution, and kinetic processing of pharmaceuticals in exposed fish have received less attention. For this research, we investigated the uptake, disposition, and toxicokinetics of five pharmaceuticals (diclofenac, methocarbamol, rosuvastatin, sulfamethoxazole, and temazepam) in bluegill sunfish (Lepomis macrochirus) exposed to environmentally relevant concentrations (1000-4000 ng L-1) in a flow-through exposure system. Temazepam and methocarbamol were consistently detected in bluegill biological samples with the highest concentrations in bile of 4, 940, and 180 ng g-1, respectively, while sulfamethoxazole, diclofenac, and rosuvastatin were only infrequently detected. Over 30-day exposures, the relative magnitude of mean concentrations of temazepam and methocarbamol in biological samples generally followed the order: bile ≫ gut > liver and brain > muscle, plasma, and gill. Ranges of bioconcentration factors (BCFs) in different biological samples were 0.71-3960 and 0.13-48.6 for temazepam and methocarbamol, respectively. Log BCFs were statistically positively correlated to pH adjusted log Kow (that is, log Dow), with the strongest relations for liver and brain (r2 = 0.92 and 0.99, respectively), implying that bioconcentration patterns of ionizable pharmaceuticals depend on molecular status, that is, whether a pharmaceutical is un-ionized or ionized at ambient tissue pH. Methocarbamol and temazepam underwent rapid uptake and elimination in bluegill biological compartments with uptake rate constants (Ku) and elimination rate constants (Ke) at 0.0066-0.0330 h-1 and 0.0075-0.0384 h-1, respectively, and half-lives at 18.1-92.4 h. Exposure to mixtures of diclofenac, methocarbamol, sulfamethoxazole, and temazepam had little or no influence on the uptake and elimination rates, suggesting independent multiple uptake and disposition behaviors of pharmaceuticals by fish would occur when exposed to effluent-influenced surface waters.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Animales , Peces , Perciformes , Sulfametoxazol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...