Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 187(4): 2509-2529, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34890463

RESUMEN

In tip-growing plant cells, growth results from myosin XI and F-actin-mediated deposition of cell wall polysaccharides contained in secretory vesicles. Previous evidence showed that myosin XI anticipates F-actin accumulation at the cell's tip, suggesting a mechanism where vesicle clustering via myosin XI increases F-actin polymerization. To evaluate this model, we used a conditional loss-of-function strategy by generating moss (Physcomitrium patens) plants harboring a myosin XI temperature-sensitive allele. We found that loss of myosin XI function alters tip cell morphology, vacuolar homeostasis, and cell viability but not following F-actin depolymerization. Importantly, our conditional loss-of-function analysis shows that myosin XI focuses and directs vesicles at the tip of the cell, which induces formin-dependent F-actin polymerization, increasing F-actin's local concentration. Our findings support the role of myosin XI in vesicle focusing, possibly via clustering and F-actin organization, necessary for tip growth, and deepen our understanding of additional myosin XI functions.


Asunto(s)
Actinas/metabolismo , Bryopsida/fisiología , Miosinas/metabolismo , Proteínas de Plantas/metabolismo , Orgánulos/fisiología
2.
New Phytol ; 229(4): 1924-1936, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33098085

RESUMEN

The fundamental process of polarised exocytosis requires the interconnected activity of molecular motors trafficking vesicular cargo within a dynamic cytoskeletal network. In plants, few mechanistic details are known about how molecular motors, such as myosin XI, associate with their secretory cargo to support the ubiquitous processes of polarised growth and cell division. Live-cell imaging coupled with targeted gene knockouts and a high-throughput RNAi assay enabled the first characterisation of the loss of Rab-E function. Yeast two-hybrid and subsequent in silico structural prediction uncovered a specific interaction between Rab-E and myosin XI that is conserved between P. patens and A. thaliana. Rab-E co-localises with myosin XI at sites of active exocytosis, and at the growing tip both proteins are spatiotemporally coupled. Rab-E is required for normal plant growth in P. patens and the rab-E and myosin XI phenotypes are rescued by A. thaliana's Rab-E1c and myosin XI-K/E, respectively. Both PpMyoXI and AtMyoXI-K interact with PpRabE14, and the interaction is specifically mediated by PpMyoXI residue V1422. This interaction is required for polarised growth. Our results suggest that the interaction of Rab-E and myosin XI is a conserved feature of polarised growth in plants.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Exocitosis , Miosinas , Proteínas de Plantas , División Celular , Proliferación Celular , Técnicas del Sistema de Dos Híbridos
3.
Int J Mol Sci ; 21(4)2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32075281

RESUMEN

Doxorubicin (DXR) is a drug widely used in chemotherapy. Its mode of action is based on its intercalation properties, involving the inhibition of topoisomerase II. However, few studies have reported the mitochondrial effects of DXR while investigating cardiac toxicity induced by the treatment, mostly in pediatric cases. Here, we demonstrate that DXR alters the mitochondrial membrane composition associated with bioenergetic impairment and cell death in human cancer cells. The remodeling of the mitochondrial membrane was explained by phosphatidylserine decarboxylase (PSD) inhibition by DXR. PSD catalyzes phosphatidylethanolamine (PE) synthesis from phosphatidylserine (PS), and DXR altered the PS/PE ratio in the mitochondrial membrane. Moreover, we observed that DXR localized to the mitochondrial compartment and drug uptake was rapid. Evaluation of other topoisomerase II inhibitors did not show any impact on the mitochondrial membrane composition, indicating that the DXR effect was specific. Therefore, our findings revealed a side molecular target for DXR and PSD, potentially involved in DXR anti-cancer properties and the associated toxicity.


Asunto(s)
Carboxiliasas/genética , Doxorrubicina/farmacología , Membranas Mitocondriales/efectos de los fármacos , Neoplasias/genética , Carboxiliasas/antagonistas & inhibidores , Cardiotoxicidad/etiología , Cardiotoxicidad/genética , Cardiotoxicidad/patología , Muerte Celular/efectos de los fármacos , Doxorrubicina/efectos adversos , Células HeLa , Humanos , Membranas Mitocondriales/enzimología , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo
4.
J Cell Sci ; 133(4)2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-31964706

RESUMEN

The actin cytoskeleton and active membrane trafficking machinery are essential for polarized cell growth. To understand the interactions between myosin XI, vesicles and actin filaments in vivo, we performed fluorescence recovery after photobleaching and showed that the dynamics of myosin XIa at the tip of the spreading earthmoss Physcomitrella patens caulonemal cells are actin-dependent and that 50% of myosin XI is bound to vesicles. To obtain single-particle information, we used variable-angle epifluorescence microscopy in protoplasts to demonstrate that protein myosin XIa and VAMP72-labeled vesicles localize in time and space over periods lasting only a few seconds. By tracking data with Hidden Markov modeling, we showed that myosin XIa and VAMP72-labeled vesicles exhibit short runs of actin-dependent directed transport. We also found that the interaction of myosin XI with vesicles is short-lived. Together, this vesicle-bound fraction, fast off-rate and short average distance traveled seem be crucial for the dynamic oscillations observed at the tip, and might be vital for regulation and recycling of the exocytosis machinery, while simultaneously promoting vesicle focusing and vesicle secretion at the tip, necessary for cell wall expansion.


Asunto(s)
Actinas , Bryopsida , Citoesqueleto de Actina , Actinas/genética , Bryopsida/genética , Exocitosis , Miosinas/genética
5.
Biochem Biophys Res Commun ; 506(2): 409-421, 2018 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-29339158

RESUMEN

Cell division is a fundamental biological process that has been extensively investigated in different systems. Similar to most eukaryotic cells, plant cells assemble a mitotic spindle to separate replicated chromosomes. In contrast, to complete cell division, plant cells assemble a phragmoplast, which is composed of aligned microtubules and actin filaments. This structure helps transport vesicles containing new cell wall material, which then fuse to form the cell plate; the cell plate will expand to create the new dividing cell wall. Because vesicles are known to be transported by myosin motors during interphase, we hypothesized this could also be the case during cell division and we investigated the localization of the plant homologue of myosin V - myosin XI, in cell division. In this work, we used the protonemal cells of the moss Physcomitrella patens as a model, because of its simple cellular morphology and ease to generate transgenic cell lines expressing fluorescent tagged proteins. Using a fluorescent protein fusion of myosin XI, we found that, during mitosis, this molecule appears to associate with the kinetochores immediately after nuclear envelope breakdown. Following metaphase, myosin XI stays associated with the spindle's midzone during the rest of mitosis, and when the phragmoplast is formed, it concentrates at the cell plate. Using an actin polymerization inhibitor, latrunculin B, we found that the association of myosin XI with the mitotic spindle and the phragmoplast are only partially dependent on the presence of filamentous actin. We also showed that myosin XI on the spindle partially overlaps with a v-SNARE vesicle marker but is not co-localized with the endoplasmic reticulum and a RabA vesicle marker. These observations suggest an actin-dependent and an actin-independent behavior of myosin XI during cell division, and provide novel insights to our understanding of the function of myosin XI during plant cell division.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/genética , Bryopsida/metabolismo , Regulación de la Expresión Génica de las Plantas , Miosinas/genética , Huso Acromático/metabolismo , Citoesqueleto de Actina/ultraestructura , Actinas/metabolismo , Bryopsida/citología , Pared Celular/metabolismo , Pared Celular/ultraestructura , Citocinesis , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interfase , Metafase , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Miosinas/metabolismo , Células Vegetales/metabolismo , Células Vegetales/ultraestructura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Huso Acromático/ultraestructura , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
6.
Plant Physiol ; 176(1): 352-363, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28972078

RESUMEN

F-actin has been shown to be essential for tip growth in an array of plant models, including Physcomitrella patens One hypothesis is that diffusion can transport secretory vesicles, while actin plays a regulatory role during secretion. Alternatively, it is possible that actin-based transport is necessary to overcome vesicle transport limitations to sustain secretion. Therefore, a quantitative analysis of diffusion, secretion kinetics, and cell geometry is necessary to clarify the role of actin in polarized growth. Using fluorescence recovery after photobleaching analysis, we first show that secretory vesicles move toward and accumulate at the tip in an actin-dependent manner. We then depolymerized F-actin to decouple vesicle diffusion from actin-mediated transport and measured the diffusion coefficient and concentration of vesicles. Using these values, we constructed a theoretical diffusion-based model for growth, demonstrating that with fast-enough vesicle fusion kinetics, diffusion could support normal cell growth rates. We further refined our model to explore how experimentally extrapolated vesicle fusion kinetics and the size of the secretion zone limit diffusion-based growth. This model predicts that diffusion-mediated growth is dependent on the size of the region of exocytosis at the tip and that diffusion-based growth would be significantly slower than normal cell growth. To further explore the size of the secretion zone, we used a cell wall degradation enzyme cocktail and determined that the secretion zone is smaller than 6 µm in diameter at the tip. Taken together, our results highlight the requirement for active transport in polarized growth and provide important insight into vesicle secretion during tip growth.


Asunto(s)
Actinas/metabolismo , Bryopsida/citología , Polaridad Celular , Vesículas Secretoras/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Bryopsida/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Difusión , Cinética , Modelos Biológicos , Polimerizacion/efectos de los fármacos , Vesículas Secretoras/efectos de los fármacos , Tiazolidinas/farmacología
7.
Plant Physiol ; 170(1): 367-84, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26518342

RESUMEN

The lipid composition of plasma membrane (PM) and the corresponding detergent-insoluble membrane (DIM) fraction were analyzed with a specific focus on highly polar sphingolipids, so-called glycosyl inositol phosphorylceramides (GIPCs). Using tobacco (Nicotiana tabacum) 'Bright Yellow 2' cell suspension and leaves, evidence is provided that GIPCs represent up to 40 mol % of the PM lipids. Comparative analysis of DIMs with the PM showed an enrichment of 2-hydroxylated very-long-chain fatty acid-containing GIPCs and polyglycosylated GIPCs in the DIMs. Purified antibodies raised against these GIPCs were further used for immunogold-electron microscopy strategy, revealing the distribution of polyglycosylated GIPCs in domains of 35 ± 7 nm in the plane of the PM. Biophysical studies also showed strong interactions between GIPCs and sterols and suggested a role for very-long-chain fatty acids in the interdigitation between the two PM-composing monolayers. The ins and outs of lipid asymmetry, raft formation, and interdigitation in plant membrane biology are finally discussed.


Asunto(s)
Membrana Celular/química , Lípidos de la Membrana/química , Nicotiana/química , Esfingolípidos/química , Técnicas de Cultivo de Célula/métodos , Membrana Celular/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Glicoesfingolípidos/química , Lípidos de la Membrana/metabolismo , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Microscopía Confocal , Modelos Moleculares , Fitosteroles/química , Fitosteroles/metabolismo , Hojas de la Planta/química , Esfingolípidos/metabolismo , Nicotiana/citología , Nicotiana/metabolismo
8.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 10): 1876-88, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24100308

RESUMEN

The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to release 1,4-dihydroxy-2-naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog-fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog-fold DHNA-CoA thioesterases from the cyanobacterium Synechocystis (Slr0204) and the flowering plant Arabidopsis thaliana (AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA-CoA, similar to the 4-hydroxybenzoyl-CoA (4-HBA-CoA) thioesterases from Pseudomonas and Arthrobacter. Like the 4-HBA-CoA thioesterases, the DHNA-CoA thioesterases contain either an active-site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate-bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA-CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent-exposed. Considered in light of the related 4-HBA-CoA thioesterases, these structures indicate that hotdog-fold thioesterases using either an active-site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes.


Asunto(s)
Arabidopsis/enzimología , Hidroliasas/química , Synechocystis/enzimología , Vitamina K 1/química , Ácido Aspártico/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Ácido Glutámico/metabolismo , Hidroliasas/metabolismo , Naftoles/química , Naftoquinonas/química , Unión Proteica , Pliegue de Proteína , Multimerización de Proteína , Tioléster Hidrolasas/química , Vitamina K 1/metabolismo
9.
Phytochemistry ; 96: 191-200, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23993446

RESUMEN

Although Glycosyl-Inositol-Phospho-Ceramides (GIPCs) are the main sphingolipids of plant tissues, they remain poorly characterized in term of structures. This lack of information, notably with regard to polar heads, currently hampers the understanding of GIPC functions in biological systems. This situation prompted us to undertake a large scale-analysis of plant GIPCs: 23 plant species chosen in various phylogenetic groups were surveyed for their total GIPC content. GIPCs were extracted and their polar heads were characterized by negative ion MALDI and ESI mass spectrometry. Our data shed light on an unexpected broad diversity of GIPC distributions within Plantae, and the occurrence of yet-unreported GIPC structures in green and red algae. In monocots, GIPCs with three saccharides were apparently found to be major, whereas a series with two saccharides was dominant in Eudicots within a few notable exceptions. In plant cell cultures, GIPC polar heads appeared to bear a higher number of glycan units than in the tissue from which they originate. Perspectives are discussed in term of GIPC metabolism diversity and function of these lipids.


Asunto(s)
Ceramidas/análisis , Glicoesfingolípidos/análisis , Filogenia , Plantas/química , Polisacáridos/análisis , Ceramidas/química , Cycadopsida/química , Fucus/química , Glicoesfingolípidos/química , Magnoliopsida/química , Estructura Molecular , Polisacáridos/química , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
10.
Plant J ; 73(3): 417-28, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23020796

RESUMEN

Tip growth is essential for land colonization by bryophytes, plant sexual reproduction and water and nutrient uptake. Because this specialized form of polarized cell growth requires both a dynamic actin cytoskeleton and active secretion, it has been proposed that the F-actin-associated motor myosin XI is essential for this process. Nevertheless, a spatial and temporal relationship between myosin XI and F-actin during tip growth is not known in any plant cell. Here, we use the highly polarized cells of the moss Physcomitrella patens to show that myosin XI and F-actin localize, in vivo, at the same apical domain and that both signals fluctuate. Surprisingly, phase analysis shows that increase in myosin XI anticipates that of F-actin; in contrast, myosin XI levels at the tip fluctuate in identical phase with a vesicle marker. Pharmacological analysis using a low concentration of the actin polymerization inhibitor latrunculin B showed that the F-actin at the tip can be significantly diminished while myosin XI remains elevated in this region, suggesting that a mechanism exists to cluster myosin XI-associated structures at the cell's apex. In addition, this approach uncovered a mechanism for actin polymerization-dependent motility in the moss cytoplasm, where myosin XI-associated structures seem to anticipate and organize the actin polymerization machinery. From our results, we inferred a model where the interaction between myosin XI-associated vesicular structures and F-actin polymerization-driven motility function at the cell's apex to maintain polarized cell growth. We hypothesize this is a general mechanism for the participation of myosin XI and F-actin in tip growing cells.


Asunto(s)
Actinas/metabolismo , Bryopsida/crecimiento & desarrollo , Miosinas/metabolismo , Bryopsida/citología , Bryopsida/metabolismo
11.
Front Plant Sci ; 3: 230, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23087697

RESUMEN

Kinesins are an ancient superfamily of microtubule dependent motors. They participate in an extensive and diverse list of essential cellular functions, including mitosis, cytokinesis, cell polarization, cell elongation, flagellar development, and intracellular transport. Based on phylogenetic relationships, the kinesin superfamily has been subdivided into 14 families, which are represented in most eukaryotic phyla. The functions of these families are sometimes conserved between species, but important variations in function across species have been observed. Plants possess most kinesin families including a few plant specific families. With the availability of an ever increasing number of genome sequences from plants, it is important to document the complete complement of kinesins present in a given organism. This will help develop a molecular framework to explore the function of each family using genetics, biochemistry, and cell biology. The moss Physcomitrella patens has emerged as a powerful model organism to study gene function in plants, which makes it a key candidate to explore complex gene families, such as the kinesin superfamily. Here we report a detailed phylogenetic characterization of the 71 kinesins of the kinesin superfamily in Physcomitrella. We found a remarkable conservation of families and subfamily classes with Arabidopsis, which is important for future comparative analysis of function. Some of the families, such as kinesins 14s are composed of fewer members in moss, while other families, such as the kinesin 12s are greatly expanded. To improve the comparison between species, and to simplify communication between research groups, we propose a classification of subfamilies based on our phylogenetic analysis.

12.
BMC Plant Biol ; 12: 70, 2012 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-22594499

RESUMEN

BACKGROUND: In the last decade, the moss Physcomitrella patens has emerged as a powerful plant model system, amenable for genetic manipulations not possible in any other plant. This moss is particularly well suited for plant polarized cell growth studies, as in its protonemal phase, expansion is restricted to the tip of its cells. Based on pollen tube and root hair studies, it is well known that tip growth requires active secretion and high polarization of the cellular components. However, such information is still missing in Physcomitrella patens. To gain insight into the mechanisms underlying the participation of organelle organization in tip growth, it is essential to determine the distribution and the dynamics of the organelles in moss cells. RESULTS: We used fluorescent protein fusions to visualize and track Golgi dictyosomes, mitochondria, and peroxisomes in live protonemal cells. We also visualized and tracked chloroplasts based on chlorophyll auto-fluorescence. We showed that in protonemata all four organelles are distributed in a gradient from the tip of the apical cell to the base of the sub-apical cell. For example, the density of Golgi dictyosomes is 4.7 and 3.4 times higher at the tip than at the base in caulonemata and chloronemata respectively. While Golgi stacks are concentrated at the extreme tip of the caulonemata, chloroplasts and peroxisomes are totally excluded. Interestingly, caulonemata, which grow faster than chloronemata, also contain significantly more Golgi dictyosomes and fewer chloroplasts than chloronemata. Moreover, the motility analysis revealed that organelles in protonemata move with low persistency and average instantaneous speeds ranging from 29 to 75 nm/s, which are at least three orders of magnitude slower than those of pollen tube or root hair organelles. CONCLUSIONS: To our knowledge, this study reports the first quantitative analysis of organelles in Physcomitrella patens and will make possible comparisons of the distribution and dynamics of organelles from different tip growing plant cells, thus enhancing our understanding of the mechanisms of plant polarized cell growth.


Asunto(s)
Bryopsida/citología , Orgánulos/metabolismo , Células Vegetales/metabolismo , Bryopsida/química , Bryopsida/genética , Bryopsida/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Orgánulos/química , Orgánulos/genética , Células Vegetales/química
13.
Prog Lipid Res ; 51(3): 272-99, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22554527

RESUMEN

Lipids tend to organize in mono or bilayer phases in a hydrophilic environment. While they have long been thought to be incapable of coherent lateral segregation, it is now clear that spontaneous assembly of these compounds can confer microdomain organization beyond spontaneous fluidity. Membrane raft microdomains have the ability to influence spatiotemporal organization of protein complexes, thereby allowing regulation of cellular processes. In this review, we aim at summarizing briefly: (i) the history of raft discovery in animals and plants, (ii) the main findings about structural and signalling plant lipids involved in raft segregation, (iii) imaging of plant membrane domains, and their biochemical purification through detergent-insoluble membranes, as well as the existing debate on the topic. We also discuss the potential involvement of rafts in the regulation of plant physiological processes, and further discuss the prospects of future research into plant membrane rafts.


Asunto(s)
Lípidos , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Células Vegetales/química , Células Vegetales/metabolismo
14.
Plant J ; 64(1): 38-46, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20626653

RESUMEN

Plants and certain species of cyanobacteria are the only organisms capable of synthesizing phylloquinone (vitamin K1 for vertebrates), which they use as an electron carrier during photosynthesis. Recent studies, however, have identified a plastidial pool of non-photoactive phylloquinone that could be involved in additional cellular functions. Here, we characterized an Arabidopsis bimodular enzyme--the At4g35760 gene product--comprising an integral domain homologous to the catalytic subunit of mammalian vitamin K1 epoxide reductase (VKORC1, EC 1.1.4.1) that is fused to a soluble thioredoxin-like moiety. GFP-fusion experiments in tobacco mesophyll cells established that the plant protein is targeted to plastids, and analyses of transcript and protein levels showed that expression is maximal in leaf tissues. The fused and individual VKORC1 domains were separately expressed in yeast, removing their chloroplast targeting pre-sequence and adding a C-terminal consensus signal for retention in the endoplasmic reticulum. The corresponding microsomal preparations were equally effective at mediating the dithiotreitol-dependent reduction of phylloquinone and menaquinone into their respective quinol forms. Strikingly, unlike mammalian VKORC1, the Arabidopsis enzyme did not reduce phylloquinone epoxide, and was resistant to inhibition by warfarin. The isoprenoid benzoquinone conjugates plastoquinone and ubiquinone were not substrates, establishing that the plant enzyme evolved strict specificity for the quinone form of naphthalenoid conjugates. In vitro reconstitution experiments established that the soluble thioredoxin-like domain can function as an electron donor for its integral VKORC1 partner.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Cloroplastos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Vitamina K 1/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clonación Molecular , Oxigenasas de Función Mixta/genética , Quinona Reductasas/genética , Quinona Reductasas/metabolismo , Vitamina K Epóxido Reductasas
15.
Plant Physiol ; 152(4): 2173-87, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20181756

RESUMEN

In this article, we analyzed the lipid composition of detergent-insoluble membranes (DIMs) purified from tobacco (Nicotiana tabacum) plasma membrane (PM), focusing on polyphosphoinositides, lipids known to be involved in various signal transduction events. Polyphosphoinositides were enriched in DIMs compared with whole PM, whereas all structural phospholipids were largely depleted from this fraction. Fatty acid composition analyses suggest that enrichment of polyphosphoinositides in DIMs is accompanied by their association with more saturated fatty acids. Using an immunogold-electron microscopy strategy, we were able to visualize domains of phosphatidylinositol 4,5-bisphosphate in the plane of the PM, with 60% of the epitope found in clusters of approximately 25 nm in diameter and 40% randomly distributed at the surface of the PM. Interestingly, the phosphatidylinositol 4,5-bisphosphate cluster formation was not significantly sensitive to sterol depletion induced by methyl-beta-cyclodextrin. Finally, we measured the activities of various enzymes of polyphosphoinositide metabolism in DIMs and PM and showed that these activities are present in the DIM fraction but not enriched. The putative role of plant membrane rafts as signaling membrane domains or membrane-docking platforms is discussed.


Asunto(s)
Fosfatos de Fosfatidilinositol/metabolismo , Plantas/metabolismo , Membrana Celular/metabolismo
16.
Int J Biochem Cell Biol ; 41(10): 1828-36, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19703652

RESUMEN

Mitochondria move along cytoskeletal tracks, fuse and divide. These dynamic features have been shown to be critical for several mitochondrial functions in cell viability and cell death. After a rapid recall of the proteic machineries that are known to be involved, the review will focus on lipids, other key molecular actors of membrane dynamics. A summary of the current knowledge on lipids and their implication in various cellular membrane fusion/fission processes will be first presented. The review will then report what has been discovered or can be expected on the role of the different families of lipids in mitochondrial membrane fusion and fission processes.


Asunto(s)
Membranas Intracelulares/metabolismo , Metabolismo de los Lípidos/fisiología , Fusión de Membrana/fisiología , Membranas Mitocondriales/metabolismo , Animales , Humanos
17.
Proc Natl Acad Sci U S A ; 106(14): 5599-603, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19321747

RESUMEN

Phylloquinone (vitamin K(1)) is a bipartite molecule that consists of a naphthoquinone ring attached to a phytyl side chain. The coupling of these 2 moieties depends on the hydrolysis of the CoA thioester of 1,4-dihydroxy-2-naphthoate (DHNA), which forms the naphthalenoid backbone. It is not known whether such a hydrolysis is enzymatic or chemical. In this study, comparative genomic analyses identified orthologous genes of unknown function that in most species of cyanobacteria cluster with predicted phylloquinone biosynthetic genes. The encoded approximately 16-kDa proteins display homology with some Hotdog domain-containing CoA thioesterases that are involved in the catabolism of 4-hydroxybenzoyl-CoA and gentisyl-CoA (2,5-dihydroxybenzoyl-CoA) in certain soil-dwelling bacteria. The Synechocystis ortholog, encoded by gene slr0204, was expressed as a recombinant protein and was found to form DHNA as reaction product. Unlike its homologs in the Hotdog domain family, Slr0204 showed strict substrate specificity. The Synechocystis slr0204 knockout was devoid of DHNA-CoA thioesterease activity and accumulated DHNA-CoA. As a result, knockout cells contained 13-fold less phylloquinone than their wild-type counterparts and displayed the typical photosensitivity to high light associated to phylloquinone deficiency in cyanobacteria.


Asunto(s)
Cianobacterias/metabolismo , Redes y Vías Metabólicas , Naftoquinonas/metabolismo , Tioléster Hidrolasas/metabolismo , Vitamina K 1/metabolismo , Cianobacterias/genética , Hidrólisis , Mutación , Naftoles , Especificidad por Sustrato
18.
Plant Physiol ; 144(1): 402-18, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17337521

RESUMEN

Several studies have provided new insights into the role of sphingolipid/sterol-rich domains so-called lipid rafts of the plasma membrane (PM) from mammalian cells, and more recently from leaves, cell cultures, and seedlings of higher plants. Here we show that lipid raft domains, defined as Triton X-100-insoluble membranes, can also be prepared from Medicago truncatula root PMs. These domains have been extensively characterized by ultrastructural studies as well as by analysis of their content in lipids and proteins. M. truncatula lipid domains are shown to be enriched in sphingolipids and Delta(7)-sterols, with spinasterol as the major compound, but also in steryl glycosides and acyl-steryl glycosides. A large number of proteins (i.e. 270) have been identified. Among them, receptor kinases and proteins related to signaling, cellular trafficking, and cell wall functioning were well represented whereas those involved in transport and metabolism were poorly represented. Evidence is also given for the presence of a complete PM redox system in the lipid rafts.


Asunto(s)
Medicago truncatula/metabolismo , Microdominios de Membrana/química , Oxidación-Reducción , Fraccionamiento Celular , Medicago truncatula/ultraestructura , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Microdominios de Membrana/metabolismo , Microdominios de Membrana/ultraestructura , Proteínas de Plantas/clasificación , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Proteómica , Solubilidad , Estigmasterol/análogos & derivados , Estigmasterol/metabolismo
19.
Plant Signal Behav ; 2(6): 508-11, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19704542

RESUMEN

Lipid rafts in plasma membranes are hypothesized to play key roles in many cellular processes including signal transduction, membrane trafficking and entry of pathogens. We recently documented the biochemical characterization of lipid rafts, isolated as detergent-insoluble membranes, from Medicago truncatula root plasma membranes. We evidenced that the plant-specific lipid steryl-conjugates are among the main lipids of rafts together with free sterols and sphingolipids. An extensive proteomic analysis showed the presence of a specific set of proteins common to other lipid rafts, plus the presence of a redox system around a cytochrome b(561) not previously identified in lipid rafts of either plants or animals. Here, we discuss the similarities and differences between the lipids and proteins of plant and animal lipid rafts. Moreover we describe the potential biochemical functioning of the M. truncatula root lipid raft redox proteins and question whether they may play a physiological role in legume-symbiont interactions.

20.
Mol Cell Proteomics ; 5(8): 1396-411, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16648627

RESUMEN

A large body of evidence from the past decade supports the existence, in membrane from animal and yeast cells, of functional microdomains that play important roles in protein sorting, signal transduction, or infection by pathogens. Recent reports demonstrated the presence, in plants, of detergent-resistant fractions isolated from plasma membrane. Analysis of the lipidic composition of this fraction revealed its enrichment in sphingolipids and sterols and depletion in phospho- and glycerolipids as previously observed for animal microdomains. One-dimensional gel electrophoresis experiments indicated that these detergent-resistant fractions are able to recruit a specific set of plasma membrane proteins and exclude others. In the present study, we used mass spectrometry to give an extensive description of a tobacco plasma membrane fraction resistant to solubilization with Triton X-100. This led to the identification of 145 proteins whose functional and physicochemical characteristics were analyzed in silico. Parameters such as isoelectric point, molecular weight, number and length of transmembrane segments, or global hydrophobicity were analyzed and compared with the data available concerning plant plasma membrane proteins. Post-translational modifications, such as myristoylation, palmitoylation, or presence of a glycosylphosphatidylinositol anchor, were examined in relation to the presence of the corresponding proteins in these microdomains. From a functional point of view, this analysis indicated that if a primary function of the plasma membrane, such as transport, seems under-represented in the detergent-resistant fraction, others undergo a significant increase of their relative importance. Among these are signaling and response to biotic and abiotic stress, cellular trafficking, and cell wall metabolism. This suggests that these domains are likely to constitute, as in animal cells, signaling platforms involved in these physiological functions.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/análisis , Nicotiana/metabolismo , Proteínas de Plantas/análisis , Proteoma/análisis , Transporte Biológico , Pared Celular/metabolismo , Células Cultivadas , Espectrometría de Masas , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Octoxinol/química , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteoma/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...