Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(24): 7495-500, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26023188

RESUMEN

Reverse gyrase, found in hyperthermophiles, is the only enzyme known to overwind (introduce positive supercoils into) DNA. The ATP-dependent activity, detected at >70 °C, has so far been studied solely by gel electrophoresis; thus, the reaction dynamics remain obscure. Here, we image the overwinding reaction at 71 °C under a microscope, using DNA containing consecutive 30 mismatched base pairs that serve as a well-defined substrate site. A single reverse gyrase molecule processively winds the DNA for >100 turns. Bound enzyme shows moderate temperature dependence, retaining significant activity down to 50 °C. The unloaded reaction rate at 71 °C exceeds five turns per second, which is >10(2)-fold higher than hitherto indicated but lower than the measured ATPase rate of 20 s(-1), indicating loose coupling. The overwinding reaction sharply slows down as the torsional stress accumulates in DNA and ceases at stress of mere ∼ 5 pN ⋅ nm, where one more turn would cost only sixfold the thermal energy. The enzyme would thus keep DNA in a slightly overwound state to protect, but not overprotect, the genome of hyperthermophiles against thermal melting. Overwinding activity is also highly sensitive to DNA tension, with an effective interaction length exceeding the size of reverse gyrase, implying requirement for slack DNA. All results point to the mechanism where strand passage relying on thermal motions, as in topoisomerase IA, is actively but loosely biased toward overwinding.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , ADN Superhelicoidal/química , ADN Superhelicoidal/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Arqueales/metabolismo , Fenómenos Biofísicos , Calor , Hidrólisis , Cinética , Magnetismo , Modelos Moleculares , Conformación de Ácido Nucleico , Sulfolobus/enzimología , Termodinámica
2.
Biophys J ; 106(10): 2166-74, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24853745

RESUMEN

F1-ATPase is a powerful rotary molecular motor that can rotate an object several hundred times as large as the motor itself against the viscous friction of water. Forced reverse rotation has been shown to lead to ATP synthesis, implying that the mechanical work against the motor's high torque can be converted into the chemical energy of ATP. The minimal composition of the motor protein is α3ß3γ subunits, where the central rotor subunit γ turns inside a stator cylinder made of alternately arranged α3ß3 subunits using the energy derived from ATP hydrolysis. The rotor consists of an axle, a coiled coil of the amino- and carboxyl-terminal α-helices of γ, which deeply penetrates the stator cylinder, and a globular protrusion that juts out from the stator. Previous work has shown that, for a thermophilic F1, significant portions of the axle can be truncated and the motor still rotates a submicron sized bead duplex, indicating generation of up to half the wild-type (WT) torque. Here, we inquire if any specific interactions between the stator and the rest of the rotor are needed for the generation of a sizable torque. We truncated the protruding portion of the rotor and replaced part of the remaining axle residues such that every residue of the rotor has been deleted or replaced in this or previous truncation mutants. This protrusionless construct showed an unloaded rotary speed about a quarter of the WT, and generated one-third to one-half of the WT torque. No residue-specific interactions are needed for this much performance. F1 is so designed that the basic rotor-stator interactions for torque generation and control of catalysis rely solely upon the shape and size of the rotor at very low resolution. Additional tailored interactions augment the torque to allow ATP synthesis under physiological conditions.


Asunto(s)
ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Torque , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Bacillus/enzimología , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Estructura Secundaria de Proteína , ATPasas de Translocación de Protón/genética , Rotación
3.
J Biol Chem ; 289(1): 403-12, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24247239

RESUMEN

Reduction of ATP hydrolysis activity of vacuolar-type ATPase/synthase (V0V1) as a result of ADP inhibition occurs as part of the normal mechanism of V0V1 of Thermus thermophilus but not V0V1 of Enterococcus hirae or eukaryotes. To investigate the molecular basis for this difference, domain-swapped chimeric V1 consisting of both T. thermophilus and E. hirae enzymes were generated, and their function was analyzed. The data showed that the interaction between the nucleotide binding and C-terminal domains of the catalytic A subunit from E. hirae V1 is central to increasing binding affinity of the chimeric V1 for phosphate, resulting in reduction of the ADP inhibition. These findings together with a comparison of the crystal structures of T. thermophilus V1 with E. hirae V1 strongly suggest that the A subunit adopts a conformation in T. thermophilus V1 different from that in E. hirae V1. This key difference results in ADP inhibition of T. thermophilus V1 by abolishing the binding affinity for phosphate during ATP hydrolysis.


Asunto(s)
Adenosina Difosfato/química , Adenosina Trifosfato/química , Proteínas Bacterianas/química , Enterococcus/enzimología , Thermus thermophilus/enzimología , ATPasas de Translocación de Protón Vacuolares/química , Adenosina Difosfato/genética , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enterococcus/genética , Estructura Terciaria de Proteína , Subunidades de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad de la Especie , Thermus thermophilus/genética , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
4.
J Bacteriol ; 194(16): 4178-83, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22661687

RESUMEN

Here, we provide evidence that YqjD, a hypothetical protein of Escherichia coli, is an inner membrane and ribosome binding protein. This protein is expressed during the stationary growth phase, and expression is regulated by stress response sigma factor RpoS. YqjD possesses a transmembrane motif in the C-terminal region and associates with 70S and 100S ribosomes at the N-terminal region. Interestingly, E. coli possesses two paralogous proteins of YqjD, ElaB and YgaM, which are expressed and bind to ribosomes in a similar manner to YqjD. Overexpression of YqjD leads to inhibition of cell growth. It has been suggested that YqjD loses ribosomal activity and localizes ribosomes to the membrane during the stationary phase.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas de la Membrana/metabolismo , Ribosomas/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/química , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Ribosomas/química , Factor sigma/metabolismo
5.
J Biol Chem ; 287(3): 1884-91, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22128167

RESUMEN

ATP synthase (F(0)F(1)) is made of two motors, a proton-driven motor (F(0)) and an ATP-driven motor (F(1)), connected by a common rotary shaft, and catalyzes proton flow-driven ATP synthesis and ATP-driven proton pumping. In F(1), the central γ subunit rotates inside the α(3)ß(3) ring. Here we report structural features of F(1) responsible for torque generation and the catalytic ability of the low-torque F(0)F(1). (i) Deletion of one or two turns in the α-helix in the C-terminal domain of catalytic ß subunit at the rotor/stator contact region generates mutant F(1)s, termed F(1)(1/2)s, that rotate with about half of the normal torque. This helix would support the helix-loop-helix structure acting as a solid "pushrod" to push the rotor γ subunit, but the short helix in F(1)(1/2)s would fail to accomplish this task. (ii) Three different half-torque F(0)F(1)(1/2)s were purified and reconstituted into proteoliposomes. They carry out ATP-driven proton pumping and build up the same small transmembrane ΔpH, indicating that the final ΔpH is directly related to the amount of torque. (iii) The half-torque F(0)F(1)(1/2)s can catalyze ATP synthesis, although slowly. The rate of synthesis varies widely among the three F(0)F(1)(1/2)s, which suggests that the rate reflects subtle conformational variations of individual mutants.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Fuerza Protón-Motriz/fisiología , ATPasas de Translocación de Protón/química , Catálisis , Dominio Catalítico , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Secuencias Hélice-Asa-Hélice , Mutación , Estructura Terciaria de Proteína , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo
6.
Biophys J ; 101(1): 188-95, 2011 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-21723829

RESUMEN

F(1)-ATPase is an ATP-driven rotary molecular motor in which the central γ-subunit rotates inside a cylinder made of α(3)ß(3) subunits. The amino and carboxyl termini of the γ rotor form a coiled coil of α-helices that penetrates the stator cylinder to serve as an axle. Crystal structures indicate that the axle is supported by the stator at two positions, at the orifice and by the hydrophobic sleeve surrounding the axle tip. The sleeve contacts are almost exclusively to the longer carboxyl-terminal helix, whereas nearly half the orifice contacts are to the amino-terminal helix. Here, we truncated the amino-terminal helix stepwise up to 50 residues, removing one half of the axle all the way up and far beyond the orifice. The half-sliced axle still rotated with an unloaded speed a quarter of the wild-type speed, with torque nearly half the wild-type torque. The truncations were made in a construct where the rotor tip was connected to a ß-subunit via a short peptide linker. Linking alone did not change the rotational characteristics significantly. These and previous results show that nearly half the normal torque is generated if rotor-stator interactions either at the orifice or at the sleeve are preserved, suggesting that the make of the motor is quite robust.


Asunto(s)
ATPasas de Translocación de Protón/química , Torque , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Electroforesis en Gel de Poliacrilamida , Oro , Hidrólisis , Microesferas , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Tamaño de la Partícula , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Reproducibilidad de los Resultados , Rotación
7.
Nat Commun ; 2: 233, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21407199

RESUMEN

Vacuole-type ATPases (V(o)V1) and F(o)F1 ATP synthases couple ATP hydrolysis/synthesis in the soluble V(1) or F1 portion with proton (or Na(+)) flow in the membrane-embedded V(o) or F(o) portion through rotation of one common shaft. Here we show at submillisecond resolutions the ATP-driven rotation of isolated V1 and the whole V(o)V1 from Thermus thermophilus, by attaching a 40-nm gold bead for which viscous drag is almost negligible. V1 made 120° steps, commensurate with the presence of three catalytic sites. Dwells between the steps involved at least two events other than ATP binding, one likely to be ATP hydrolysis. V(o)V1 exhibited 12 dwell positions per revolution, consistent with the 12-fold symmetry of the V(o) rotor in T. thermophilus. Unlike F1 that undergoes 80°-40° substepping, chemo-mechanical checkpoints in isolated V1 are all at the ATP-waiting position, and V(o) adds further bumps through stator-rotor interactions outside and remote from V1.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Proteínas Bacterianas/metabolismo , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Escherichia coli , Oro/análisis , Oro/metabolismo , Hidrólisis , Cinética , Microesferas , Modelos Moleculares , Sondas Moleculares/análisis , Sondas Moleculares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Protones , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Rotación , Sodio/metabolismo , Estreptavidina/análisis , Estreptavidina/metabolismo , Thermus thermophilus/química , Thermus thermophilus/enzimología , Thermus thermophilus/genética , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/genética , Viscosidad
8.
Biochim Biophys Acta ; 1797(4): 435-42, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20044971

RESUMEN

F(1)-ATPase is a rotary molecular motor in which the gamma subunit rotates inside the cylinder made of alpha(3)beta(3) subunits. We have studied the effects of sodium dodecyl sulfate (SDS) on the rotational and ATP hydrolysis activities of F(1)-ATPase. Bulk hydrolysis activity at various SDS concentrations was examined at 2mM ATP. Maximal stimulation was obtained at 0.003% (w/v) SDS, the initial (least inhibited) activity being about 1.4 times and the steady-state activity 3-4 times the values in the absence of SDS. Rotation rates observed with a 40-nm gold bead or a 0.29-mum bead duplex as well as the torque were unaffected by the presence of 0.003% SDS. The fraction of beads that rotated, in contrast, tended to increase in the presence of SDS. SDS seems to bring inactive F(1) molecules into an active form but it does not alter or enhance the function of already active F(1) molecules significantly.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Dodecil Sulfato de Sodio/farmacología , Adenosina Trifosfato/química , Bacillus/enzimología , Proteínas Bacterianas/química , Hidrólisis/efectos de los fármacos , Cinética , ATPasas de Translocación de Protón/química
9.
FEBS Lett ; 583(7): 1121-6, 2009 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-19265694

RESUMEN

F(1)-ATPase is an ATP-driven motor in which gammaepsilon rotates in the alpha(3)beta(3)-cylinder. It is attenuated by MgADP inhibition and by the epsilon subunit in an inhibitory form. The non-inhibitory form of epsilon subunit of thermophilic Bacillus PS3 F(1)-ATPase is stabilized by ATP-binding with micromolar K(d) at 25 degrees C. Here, we show that at [ATP]>2 microM, epsilon does not affect rotation of PS3 F(1)-ATPase but, at 200 nM ATP, epsilon prolongs the pause of rotation caused by MgADP inhibition while the frequency of the pause is unchanged. It appears that epsilon undergoes reversible transition to the inhibitory form at [ATP] below K(d).


Asunto(s)
Bacillus/enzimología , Proteínas Bacterianas/química , ATPasas de Translocación de Protón Bacterianas/química , Proteínas Motoras Moleculares/química , Adenosina Difosfato/antagonistas & inhibidores , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/antagonistas & inhibidores , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , ATPasas de Translocación de Protón Bacterianas/metabolismo , Dominio Catalítico/fisiología , Proteínas Motoras Moleculares/metabolismo
10.
Biophys J ; 95(10): 4837-44, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18708468

RESUMEN

F(1)-ATPase is an ATP-driven rotary molecular motor in which the central gamma-subunit rotates inside the cylinder made of alpha(3)beta(3) subunits. The amino and carboxy termini of the gamma-subunit form the axle, an alpha-helical coiled coil that deeply penetrates the stator cylinder. We previously truncated the axle step by step, starting with the longer carboxy terminus and then cutting both termini at the same levels, resulting in a slower yet considerably powerful rotation. Here we examine the role of each helix by truncating only the carboxy terminus by 25-40 amino-acid residues. Longer truncation impaired the stability of the motor complex severely: 40 deletions failed to yield rotating the complex. Up to 36 deletions, however, the mutants produced an apparent torque at nearly half of the wild-type torque, independent of truncation length. Time-averaged rotary speeds were low because of load-dependent stumbling at 120 degrees intervals, even with saturating ATP. Comparison with our previous work indicates that half the normal torque is produced at the orifice of the stator. The very tip of the carboxy terminus adds the other half, whereas neither helix in the middle of the axle contributes much to torque generation and the rapid progress of catalysis. None of the residues of the entire axle played a specific decisive role in rotation.


Asunto(s)
Adenosina Trifosfato/química , Modelos Químicos , Modelos Moleculares , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/ultraestructura , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/ultraestructura , Simulación por Computador , Movimiento (Física) , Mutagénesis Sitio-Dirigida , Conformación Proteica , Estructura Terciaria de Proteína , Torque
11.
Biophys J ; 95(2): 761-70, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18375515

RESUMEN

F(1)-ATPase, a water-soluble portion of the enzyme ATP synthase, is a rotary molecular motor driven by ATP hydrolysis. To learn how the kinetics of rotation are regulated, we have investigated the rotational characteristics of a thermophilic F(1)-ATPase over the temperature range 4-50 degrees C by attaching a polystyrene bead (or bead duplex) to the rotor subunit and observing its rotation under a microscope. The apparent rate of ATP binding estimated at low ATP concentrations increased from 1.2 x 10(6) M(-1) s(-1) at 4 degrees C to 4.3 x 10(7) M(-1) s(-1) at 40 degrees C, whereas the torque estimated at 2 mM ATP remained around 40 pN.nm over 4-50 degrees C. The rotation was stepwise at 4 degrees C, even at the saturating ATP concentration of 2 mM, indicating the presence of a hitherto unresolved rate-limiting reaction that occurs at ATP-waiting angles. We also measured the ATP hydrolysis activity in bulk solution at 4-65 degrees C. F(1)-ATPase tends to be inactivated by binding ADP tightly. Both the inactivation and reactivation rates were found to rise sharply with temperature, and above 30 degrees C, equilibrium between the active and inactive forms was reached within 2 s, the majority being inactive. Rapid inactivation at high temperatures is consistent with the physiological role of this enzyme, ATP synthesis, in the thermophile.


Asunto(s)
Modelos Químicos , Modelos Moleculares , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/ultraestructura , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/ultraestructura , Simulación por Computador , Activación Enzimática , Hidrólisis , Rotación , Temperatura
12.
Science ; 319(5865): 955-8, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18276891

RESUMEN

F1-adenosine triphosphatase (ATPase) is an ATP-driven rotary molecular motor in which the central gamma subunit rotates inside a cylinder made of three alpha and three beta subunits alternately arranged. The rotor shaft, an antiparallel alpha-helical coiled coil of the amino and carboxyl termini of the gamma subunit, deeply penetrates the central cavity of the stator cylinder. We truncated the shaft step by step until the remaining rotor head would be outside the cavity and simply sat on the concave entrance of the stator orifice. All truncation mutants rotated in the correct direction, implying torque generation, although the average rotary speeds were low and short mutants exhibited moments of irregular motion. Neither a fixed pivot nor a rigid axle was needed for rotation of F1-ATPase.


Asunto(s)
Proteínas Motoras Moleculares/química , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Hidrólisis , Microesferas , Proteínas Motoras Moleculares/metabolismo , Datos de Secuencia Molecular , Proteínas Mutantes/química , Mutación , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/genética , Rotación , Torque
13.
Cell ; 130(2): 309-21, 2007 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-17662945

RESUMEN

F(1)-ATPase is a rotary molecular motor that proceeds in 120 degrees steps, each driven by ATP hydrolysis. How the chemical reactions that occur in three catalytic sites are coupled to mechanical rotation is the central question. Here, we show by high-speed imaging of rotation in single molecules of F(1) that phosphate release drives the last 40 degrees of the 120 degrees step, and that the 40 degrees rotation accompanies reduction of the affinity for phosphate. We also show, by single-molecule imaging of a fluorescent ATP analog Cy3-ATP while F(1) is forced to rotate slowly, that release of Cy3-ADP occurs at approximately 240 degrees after it is bound as Cy3-ATP at 0 degrees . This and other results suggest that the affinity for ADP also decreases with rotation, and thus ADP release contributes part of energy for rotation. Together with previous results, the coupling scheme is now basically complete.


Asunto(s)
Imagenología Tridimensional , ATPasas de Translocación de Protón/metabolismo , Rotación , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Carbocianinas/metabolismo , Catálisis , Cinética , Fosfatos/metabolismo , Termodinámica , Factores de Tiempo
14.
Biophys J ; 90(11): 4195-203, 2006 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-16698789

RESUMEN

F(1)-ATPase is an ATP-driven rotary molecular motor in which the central gamma-subunit rotates inside a stator cylinder made of alpha(3)beta(3) subunits. To elucidate the role of rotor-stator interactions in torque generation, we truncated the gamma-subunit at its carboxyl terminus, which forms an alpha helix that penetrates deeply into the stator cylinder. We used an alpha(3)beta(3)gamma subcomplex of F(1)-ATPase derived from thermophilic Bacillus PS3 and expressed it in Escherichia coli. We could obtain purified subcomplexes in which 14, 17, or 21 amino-acid residues were deleted. The rotary characteristics of the truncated mutants, monitored by attaching a duplex of 0.49-microm beads to the gamma-subunit, did not differ greatly from those of the wild-type over the ATP concentrations of 20 nM-2 mM, the most conspicuous effect being approximately 50% reduction in torque and approximately 70% reduction in the rate of ATP binding upon deletion of 21 residues. The ATP hydrolysis activity estimated in bulk samples was more seriously affected. The 21-deletion mutant, in particular, was >10-fold less active, but this is likely due to instability of this subcomplex. For torque generation, though not for rapid catalysis, most of the rotor-stator contacts on the deeper half of the penetrating portion of the gamma-subunit are dispensable.


Asunto(s)
Modelos Moleculares , Proteínas Motoras Moleculares/química , ATPasas de Translocación de Protón/química , Bacillus/química , Dominio Catalítico , Proteínas Motoras Moleculares/genética , Mutación , Unión Proteica , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , ATPasas de Translocación de Protón/genética , Proteínas Recombinantes/química , Torque
15.
Biophys J ; 88(3): 2047-56, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15626703

RESUMEN

F(1)-ATPase is a rotary molecular motor in which the central gamma-subunit rotates inside a cylinder made of alpha(3)beta(3)-subunits. The rotation is driven by ATP hydrolysis in three catalytic sites on the beta-subunits. How many of the three catalytic sites are filled with a nucleotide during the course of rotation is an important yet unsettled question. Here we inquire whether F(1) rotates at extremely low ATP concentrations where the site occupancy is expected to be low. We observed under an optical microscope rotation of individual F(1) molecules that carried a bead duplex on the gamma-subunit. Time-averaged rotation rate was proportional to the ATP concentration down to 200 pM, giving an apparent rate constant for ATP binding of 2 x 10(7) M(-1)s(-1). A similar rate constant characterized bulk ATP hydrolysis in solution, which obeyed a simple Michaelis-Menten scheme between 6 mM and 60 nM ATP. F(1) produced the same torque of approximately 40 pN.nm at 2 mM, 60 nM, and 2 nM ATP. These results point to one rotary mechanism governing the entire range of nanomolar to millimolar ATP, although a switchover between two mechanisms cannot be dismissed. Below 1 nM ATP, we observed less regular rotations, indicative of the appearance of another reaction scheme.


Asunto(s)
Adenosina Trifosfato/química , Microquímica/métodos , Proteínas Motoras Moleculares/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/ultraestructura , Hidrólisis , Cinética , Unión Proteica , Conformación Proteica , Rotación , Torque
16.
Biochim Biophys Acta ; 1615(1-2): 1-6, 2003 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-12948584

RESUMEN

The 20S proteasome plays important roles in degradation of intracellular proteins. Mechanisms of its activation, its localization in cells, and its binding to biomembranes are not well understood. In this study, we used atomic force microscopy (AFM) to investigate interactions between the 20S proteasome and supported bilayers of various lipids in a buffer. We found that the 20S proteasome specifically bound to supported bilayers containing phosphatidylinositol (PI), but did not bind to supported bilayers containing phosphatidylcholine, phosphatidic acid or dioleoyltrimethylammonium propane. Binding of the 20S proteasomes had a high orientation; almost all were in a top view position. The specific and orientational binding of the 20S proteasome with PI may play important roles inside cells such as endoplasmic reticulum (ER) membrane. Use of AFM to study supported bilayers provides new information on ligand-receptor interactions.


Asunto(s)
Membrana Celular/metabolismo , Cisteína Endopeptidasas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Microscopía de Fuerza Atómica , Complejos Multienzimáticos/metabolismo , Animales , Bovinos , Complejo de la Endopetidasa Proteasomal
17.
J Muscle Res Cell Motil ; 23(5-6): 525-34, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12785102

RESUMEN

Filamin A produces isotropic cross-linked three-dimensional orthogonal networks with actin filaments in the cortex and at the leading edge of cells. Filamin A also links the actin cytoskeleton to the plasma membrane via its association with various kinds of membrane proteins. Recent new findings strongly support that filamin A plays important roles in the mechanical stability of plasma membrane and cortex, formation of cell shape, mechanical responses of cells, and cell locomotion. To elucidate the mechanical properties of the actin/filamin A network and the complex of membrane protein-filamin A-actin cytoskeleton, the mechanical properties of single human filamin A (hsFLNa) molecules in aqueous solution were investigated using atomic force microscopy. Ig-fold domains of filamin A can be unfolded by the critical external force (50-220 pN), and this unfolding is reversible, i.e., the refolding of the unfolded chain of the filamin A occurs when the external force is removed. Due to this reversible unfolding of Ig-fold domains, filamin A molecule can be stretched to several times the length of its native state. Based on this new feature of filamin A as the 'large-extensible linker', we describe our hypothesis for the mechanical role of filamin A in the actin cytoskeletons in cells and discuss its biological implications. In this review, function of filamin A in actin cytoskeleton, mechanical properties of single filamin A proteins, and the hypothesis for the mechanical role of filamin A in the actin cytoskeletons are discussed.


Asunto(s)
Actinas/metabolismo , Simulación por Computador , Proteínas Contráctiles/metabolismo , Citoesqueleto/metabolismo , Proteínas de Microfilamentos/metabolismo , Animales , Antígenos CD18/metabolismo , Membrana Celular/metabolismo , Proteínas Contráctiles/química , Elasticidad , Filaminas , Humanos , Inmunoglobulinas/química , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/química , Microscopía de Fuerza Atómica , Conformación Molecular , Desnaturalización Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA