Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 41(4): 111548, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36288708

RESUMEN

Translation of 5' terminal oligopyrimidine (TOP) mRNAs encoding the protein synthesis machinery is strictly regulated by an amino-acid-sensing mTOR pathway. However, its regulatory mechanism remains elusive. Here, we demonstrate that TOP mRNA translation positively correlates with its poly(A) tail length under mTOR active/amino-acid-rich conditions, suggesting that TOP mRNAs are post-transcriptionally controlled by poly(A) tail-length regulation. Consistent with this, the tail length of TOP mRNAs dynamically fluctuates in response to amino acid availability. The poly(A) tail shortens under mTOR active/amino-acid-rich conditions, whereas the long-tailed TOP mRNAs accumulate under mTOR inactive/amino-acid-starved (AAS) conditions. An RNA-binding protein, LARP1, is indispensable for the process. LARP1 interacts with non-canonical poly(A) polymerases and induces post-transcriptional polyadenylation of the target. Our findings illustrate that LARP1 contributes to the selective accumulation of TOP mRNAs with long poly(A) tails under AAS, resulting in accelerated ribosomal loading onto TOP mRNAs for the resumption of translation after AAS.


Asunto(s)
Autoantígenos , Ribonucleoproteínas , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo , Autoantígenos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ribosomas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Polinucleotido Adenililtransferasa/genética , Aminoácidos/metabolismo , Biosíntesis de Proteínas
2.
Biochem Biophys Res Commun ; 511(2): 422-426, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30799083

RESUMEN

MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate gene expression at post-transcriptional level via translational repression and/or mRNA degradation. miRNAs are associated with many cellular processes, and down-regulation of miRNAs causes numerous diseases including cancer, neurological disorders, inflammation, and cardiovascular diseases, for which miRNA replacement therapy has emerged as a promising approach. This approach aims to restore down-regulated miRNAs using synthetic miRNA mimics. However, it remains a critical issue that miRNA mimics are unstable and transient in cells. Here, we first show that miRNA mimics are rapidly degraded by a mechanism different from Tudor-staphylococcal/micrococcal-like nuclease (TSN)-mediated miRNA decay, which degrades endogenous miRNAs, and newly identified 2'-5'-oligoadenylate synthetase (OAS)/RNase L as key factors responsible for the degradation of miRNA mimics in human cells. Our results suggest that the OAS1 recognizes miRNA mimics and produces 2'-5'-oligoadenylates (2-5A), which leads to the activation of latent endoribonuclease RNase L to degrade miRNA mimics. A small-molecule inhibitor that blocks RNase L can stabilize miRNA mimics. These findings provide a promising method for the stabilization of miRNA mimics, as well as for the efficient miRNA replacement therapy.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/metabolismo , Endorribonucleasas/metabolismo , MicroARNs/metabolismo , Estabilidad del ARN , Células HeLa , Humanos , MicroARNs/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA