Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; : 116302, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763261

RESUMEN

Spinal cord injury (SCI) afflicts millions of individuals globally. There are few therapies available to patients. Ascending and descending excitatory glutamatergic neural circuits in the central nervous system are disrupted by SCI, making α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) a potential therapeutic drug target. Emerging research in preclinical models highlights the involvement of AMPARs in vital processes following SCI including breathing, pain, inflammation, bladder control, and motor function. However, there are no clinical trial data reported in this patient population to date. No work on the role of AMPA receptors in sexual dysfunction after SCI has been disclosed. Compounds with selective antagonist and potentiating effects on AMPA receptors have benefit in animal models of SCI, with antagonists generally showing protective effects early after injury and potentiators (ampakines) producing improved breathing and bladder function. The role of AMPARs in pathophysiology and recovery after SCI depends upon the time post injury, and the timing of AMPAR augmentation or antagonism. The roles of inflammation, synaptic plasticity, sensitization, neurotrophic factors, and neuroprotection are considered in this context. The data summarized and discussed in this paper document proof of principle and strongly encourage additional studies on AMPARs as novel gateways to therapeutic benefit for patients suffering from SCI. The availability of both AMPAR antagonists such as perampanel and AMPAR allosteric modulators (i.e., ampakines) such as CX1739, that have been safely administered to humans, provides an expedited means of clinical inquiry for possible therapeutic advances.

2.
Dis Model Mech ; 14(7)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34160002

RESUMEN

Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant neurodegenerative disorder caused by a CAG repeat expansion in the coding region of the ataxin-7 gene. Infantile-onset SCA7 patients display extremely large repeat expansions (>200 CAGs) and exhibit progressive ataxia, dysarthria, dysphagia and retinal degeneration. Severe hypotonia, aspiration pneumonia and respiratory failure often contribute to death in affected infants. To better understand the features of respiratory and upper airway dysfunction in SCA7, we examined breathing and putative phrenic and hypoglossal neuropathology in a knock-in mouse model of early-onset SCA7 carrying an expanded allele with 266 CAG repeats. Whole-body plethysmography was used to measure awake spontaneously breathing SCA7-266Q knock-in mice at baseline in normoxia and during a hypercapnic/hypoxic respiratory challenge at 4 and 8 weeks, before and after the onset of disease. Postmortem studies included quantification of putative phrenic and hypoglossal motor neurons and microglia, and analysis of ataxin-7 aggregation at end stage. SCA7-266Q mice had profound breathing deficits during a respiratory challenge, exhibiting reduced respiratory output and a greater percentage of time in apnea. Histologically, putative phrenic and hypoglossal motor neurons of SCA7 mice exhibited a reduction in number accompanied by increased microglial activation, indicating neurodegeneration and neuroinflammation. Furthermore, intranuclear ataxin-7 accumulation was observed in cells neighboring putative phrenic and hypoglossal motor neurons in SCA7 mice. These findings reveal the importance of phrenic and hypoglossal motor neuron pathology associated with respiratory failure and upper airway dysfunction, which are observed in infantile-onset SCA7 patients and likely contribute to their early death.


Asunto(s)
Degeneración Retiniana , Ataxias Espinocerebelosas , Animales , Ataxina-7 , Modelos Animales de Enfermedad , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Ataxias Espinocerebelosas/complicaciones , Ataxias Espinocerebelosas/patología
4.
Respir Physiol Neurobiol ; 282: 103525, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32805420

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disorder that results in death due to respiratory failure. Many genetic defects are associated with ALS; one such defect is a mutation in the gene encoding optineurin (OPTN). Using an optineurin null mouse (Optn-/-), we sought to characterize the impact of optineurin deficiency on respiratory neurodegeneration. Respiratory function was assessed at 6 and 12 mo of age using whole body plethysmography at baseline during normoxia (FiO2: 0.21; N2 balance) and during a respiratory challenge with hypoxia and hypercapnia (FiCO2: 0.07, FiO2: 0.10; N2 balance). Histological analyses to assess motor neuron viability and respiratory nerve integrity were performed in the medulla, cervical spinal cord, hypoglossal nerve, and phrenic nerve. Minute ventilation, peak inspiratory flow, and peak expiratory flow are significantly reduced during a respiratory challenge in 6 mo Optn-/-mice. By 12 mo, tidal volume is also significantly reduced in Optn-/- mice. Furthermore, 12mo Optn-/- mice exhibit hypoglossal motor neuron loss, phrenic and hypoglossal dysmyelination, and accumulated mitochondria in the hypoglossal nerve axons. Overall, these data indicate that Optn-/- mice display neurodegenerative respiratory dysfunction and are a useful model to study the impact of novel therapies on respiratory function for optineurin-deficient ALS patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Ciclo Celular/deficiencia , Nervio Hipogloso/patología , Proteínas de Transporte de Membrana/deficiencia , Mitofagia/fisiología , Neuronas Motoras/patología , Degeneración Nerviosa/patología , Nervio Frénico/patología , Insuficiencia Respiratoria , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Insuficiencia Respiratoria/etiología , Insuficiencia Respiratoria/genética , Insuficiencia Respiratoria/patología , Insuficiencia Respiratoria/fisiopatología
5.
Sci Rep ; 10(1): 8967, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488044

RESUMEN

Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disease caused by deleterious mutations in the DMD gene which encodes the dystrophin protein. Skeletal muscle weakness and eventual muscle degradation due to loss of dystrophin are well-documented pathological hallmarks of DMD. In contrast, the neuropathology of this disease remains understudied despite the emerging evidence of neurological abnormalities induced by dystrophin loss. Using quantitative morphological analysis of nerve sections, we characterize axonopathies in the phrenic and hypoglossal (XII) nerves of mdx mice. We observe dysfunction in these nerves - which innervate the diaphragm and genioglossus respectively - that we propose contributes to respiratory failure, the most common cause of death in DMD. These observations highlight the importance in the further characterization of the neuropathology of DMD. Additionally, these observations underscore the necessity in correcting both the nervous system pathology in addition to skeletal muscle deficits to ameliorate this disease.


Asunto(s)
Axones/patología , Distrofina/genética , Mutación con Pérdida de Función , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Animales , Diafragma/inervación , Modelos Animales de Enfermedad , Nervio Hipogloso/patología , Nervio Hipogloso/fisiopatología , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/complicaciones , Nervio Frénico/patología , Nervio Frénico/fisiopatología , Insuficiencia Respiratoria/etiología
6.
Int J Mol Sci ; 21(6)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32214050

RESUMEN

Pompe disease is a glycogen storage disease caused by a deficiency in acid α-glucosidase (GAA), a hydrolase necessary for the degradation of lysosomal glycogen. This deficiency in GAA results in muscle and neuronal glycogen accumulation, which causes respiratory insufficiency. Pompe disease mouse models provide a means of assessing respiratory pathology and are important for pre-clinical studies of novel therapies that aim to treat respiratory dysfunction and improve quality of life. This review aims to compile and summarize existing manuscripts that characterize the respiratory phenotype of Pompe mouse models. Manuscripts included in this review were selected utilizing specific search terms and exclusion criteria. Analysis of these findings demonstrate that Pompe disease mouse models have respiratory physiological defects as well as pathologies in the diaphragm, tongue, higher-order respiratory control centers, phrenic and hypoglossal motor nuclei, phrenic and hypoglossal nerves, neuromuscular junctions, and airway smooth muscle. Overall, the culmination of these pathologies contributes to severe respiratory dysfunction, underscoring the importance of characterizing the respiratory phenotype while developing effective therapies for patients.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Fenotipo , Respiración , Animales , Enfermedad del Almacenamiento de Glucógeno Tipo II/patología , Enfermedad del Almacenamiento de Glucógeno Tipo II/fisiopatología , Ratones
7.
Artículo en Inglés | MEDLINE | ID: mdl-31893284

RESUMEN

Amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia (SCA) are neurodegenerative disorders that result in progressive motor dysfunction and ultimately lead to respiratory failure. Rodent models of neurodegenerative disorders provide a means to study the respiratory motor unit pathology that results in respiratory failure. In addition, they are important for pre-clinical studies of novel therapies that improve breathing, quality of life, and survival. The goal of this review is to compare the respiratory phenotype of two neurodegenerative disorders that have different pathological origins, but similar physiological outcomes. Manuscripts reviewed were identified using specific search terms and exclusion criteria. We excluded manuscripts that investigated novel therapeutics and only included those manuscripts that describe the respiratory pathology. The ALS manuscripts describe pathology in respiratory physiology, the phrenic and hypoglossal motor units, respiratory neural control centers, and accessory respiratory muscles. The SCA rodent model manuscripts characterized pathology in overall respiratory function, phrenic motor units and hypoglossal motor neurons. Overall, a combination of pathology in the respiratory motor units and control centers contribute to devastating respiratory dysfunction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...