Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 288(5): 1169-74, 2001 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-11700034

RESUMEN

The crystal structure of cobalt-containing nitrile hydratase from Pseudonocardia thermophila JCM 3095 at 1.8 A resolution revealed the structure of the noncorrin cobalt at the catalytic center. Two cysteine residues (alphaCys(111) and alphaCys(113)) coordinated to the cobalt were posttranslationally modified to cysteine-sulfinic acid and to cysteine-sulfenic acid, respectively, like in iron-containing nitrile hydratase. A tryptophan residue (betaTrp(72)), which may be involved in substrate binding, replaced the tyrosine residue of iron-containing nitrile hydratase. The difference seems to be responsible for the preference for aromatic nitriles rather than aliphatic ones of cobalt-containing nitrile hydratase.


Asunto(s)
Actinomycetales/enzimología , Proteínas Bacterianas/química , Cobalto/química , Cisteína/análogos & derivados , Hidroliasas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Cisteína/metabolismo , Hidroliasas/metabolismo , Hierro/química , Modelos Químicos , Neurotransmisores , Procesamiento Proteico-Postraduccional , Ácidos Sulfénicos/metabolismo
2.
Biochemistry ; 40(41): 12400-6, 2001 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-11591160

RESUMEN

Thermococcus litoralis 4-alpha-glucanotransferase (TLGT) belongs to family 57 of glycoside hydrolases and catalyzes the disproportionation and cycloamylose synthesis reactions. Family 57 glycoside hydrolases have not been well investigated, and even the catalytic mechanism involving the active site residues has not been studied. Using 3-ketobutylidene-beta-2-chloro-4-nitrophenyl maltopentaoside (3KBG5CNP) as a donor and glucose as an acceptor, we showed that the disproportionation reaction of TLGT involves a ping-pong bi-bi mechanism. On the basis of this reaction mechanism, the glycosyl-enzyme intermediate, in which a donor substrate was covalently bound to the catalytic nucleophile, was trapped by treating the enzyme with 3KBG5CNP in the absence of an acceptor and was detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry after peptic digestion. Postsource decay analysis suggested that either Glu-123 or Glu-129 was the catalytic nucleophile of TLGT. Glu-123 was completely conserved between family 57 enzymes, and the catalytic activity of the E123Q mutant enzyme was greatly decreased. On the other hand, Glu-129 was a variable residue, and the catalytic activity of the E129Q mutant enzyme was not decreased. These results indicate that Glu-123 is the catalytic nucleophile of TLGT. Sequence alignment of TLGT and family 38 enzymes (class II alpha-mannosidases) revealed that Glu-123 of TLGT corresponds to the nucleophilic aspartic acid residue of family 38 glycoside hydrolases, suggesting that family 57 and 38 glycoside hydrolases may have had a common ancestor.


Asunto(s)
Sistema de la Enzima Desramificadora del Glucógeno/química , Thermococcus/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Secuencia de Carbohidratos , Dominio Catalítico/genética , Glucósidos/química , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato , Thermococcus/genética
3.
Structure ; 9(3): 205-14, 2001 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-11286887

RESUMEN

BACKGROUND: ATP is the most common phosphoryl group donor for kinases. However, certain hyperthermophilic archaea such as Thermococcus litoralis and Pyrococcus furiosus utilize unusual ADP-dependent glucokinases and phosphofructokinases in their glycolytic pathways. These ADP-dependent kinases are homologous to each other but show no sequence similarity to any of the hitherto known ATP-dependent enzymes. RESULTS: We solved the crystal structure at 2.3 A resolution of an ADP-dependent glucokinase from T. litoralis (tlGK) complexed with ADP. The overall structure can be divided into large and small alpha/beta domains, and the ADP molecule is buried in a shallow pocket in the large domain. Unexpectedly, the structure was similar to those of two ATP-dependent kinases, ribokinase and adenosine kinase. Comparison based on three-dimensional structure revealed that several motifs important both in structure and function are conserved, and the recognition of the alpha- and beta-phosphate of the ADP in the tlGK was almost identical with the recognition of the beta- and gamma-phosphate of ATP in these ATP-dependent kinases. CONCLUSIONS: Noticeable points of our study are the first structure of ADP-dependent kinase, the structural similarity to members of the ATP-dependent ribokinase family, its rare nucleotide specificity caused by a shift in nucleotide binding position by one phosphate unit, and identification of the residues that discriminate ADP- and ATP-dependence. The strict conservation of the binding site for the terminal and adjacent phosphate moieties suggests a common ancestral origin of both the ATP- and ADP-dependent kinases.


Asunto(s)
Adenosina Difosfato/química , Glucoquinasa/química , Thermococcus/química , Adenosina Quinasa/química , Secuencia de Aminoácidos , Sitios de Unión , Carbohidratos/química , Cristalografía por Rayos X , Manganeso/química , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Nucleótidos/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Estructura Terciaria de Proteína , Alineación de Secuencia , Especificidad por Sustrato
4.
J Bacteriol ; 183(1): 397-400, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11114942

RESUMEN

The nonallosteric and allosteric L-lactate dehydrogenases of Lactobacillus pentosus and L. casei, respectively, exhibited broad substrate specificities, giving virtually the same maximal reaction velocity and substrate K(m) values for pyruvate and oxaloacetate. Replacement of Pro101 with Asn reduced the activity of the L. pentosus enzyme toward these alternative substrates to a greater extent than the activity toward pyruvate.


Asunto(s)
L-Lactato Deshidrogenasa/metabolismo , Lactobacillus/enzimología , Ácido Oxaloacético/metabolismo , Ácido Pirúvico/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Cinética , L-Lactato Deshidrogenasa/química , L-Lactato Deshidrogenasa/genética , Lacticaseibacillus casei/enzimología , Datos de Secuencia Molecular , Especificidad por Sustrato
5.
FEBS Lett ; 460(3): 554-8, 1999 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-10556534

RESUMEN

The FtsH (HflB) protein of Escherichia coli is a membrane-bound ATP-dependent zinc protease. The role(s) of the N-terminal membrane-anchoring region of FtsH were studied by fusion with a maltose-binding protein (MBP) at five different N-termini of FtsH. The MBP-FtsH fusions were expressed in the cytoplasm of E. coli, and were purified as soluble proteins. The four longer constructs, which have a second transmembrane segment and the C-terminal cytoplasmic region in common, retained ATP-dependent protease activity toward heat-shock transcription factor sigma(32), and were found to be homo-oligomers. In contrast, the shortest construct which has the C-terminal cytoplasmic region but not the second transmembrane segment showed neither protease activity nor oligomerization. Therefore, the second transmembrane segment, which neighbors the C-terminal cytoplasmic region of the FtsH, participates in not only its membrane-anchoring, but also its protease activity and homo-oligomerization.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas Bacterianas/fisiología , Proteínas de Escherichia coli , Proteínas de la Membrana/fisiología , Proteínas de Transporte de Monosacáridos , Fragmentos de Péptidos/fisiología , Péptido Hidrolasas/metabolismo , Proteasas ATP-Dependientes , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Proteínas Portadoras/fisiología , Clonación Molecular , Histidina/genética , Hidrólisis , Proteínas de Unión a Maltosa , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Ultracentrifugación
6.
J Mol Biol ; 285(5): 2079-87, 1999 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-9925786

RESUMEN

Bacterial resistance to beta-lactams is mainly due to the production of beta-lactamase. Especially through the production of extended-spectrum beta-lactamases (ESBLs), bacteria have acquired resistance not only to penicillins, but also to expanded-spectrum cephems. Here, we describe the crystal structure of the E166A mutant of class A beta-lactamase Toho-1 at 1.8 A resolution, the first reported tertiary structure of an ESBL. Instead of the wild-type enzyme, a mutant Toho-1, in which Glu166 was replaced with alanine, was used for this study, because of the strong tendency of the wild-type enzyme to form twinned crystals. The overall structure of Toho-1 is similar to the crystal structures of non-ESBLs, with no pronounced backbone rearrangement of the framework. However, there are some notable local changes. First, a difference in the disposition of an arginine residue, which is at position 244 in non-ESBLs but at position 276 in Toho-1 and other ESBLs, was revealed and the role of this arginine residue is discussed. Moreover, changes in the hydrogen-bonding pattern and in the formation of the hydrophobic core were also observed near the Omega loop. In particular, the lack of hydrogen bonds in the vicinity of the Omega loop could be a cause of the extended substrate specificity of Toho-1. Through the generation of a model for the enzyme-substrate complex, a conformational change of Toho-1 occurring on complex formation is discussed based on the active-site cleft structure and the substrate profile.


Asunto(s)
Mutación , beta-Lactamasas/química , beta-Lactamasas/genética , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , beta-Lactamasas/metabolismo
7.
J Biol Chem ; 273(5): 2971-6, 1998 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-9446610

RESUMEN

L-Lactate dehydrogenase from Bifidobacterium longum shows homotropic activation by pyruvate as well as heterotropic activation by fructose 1,6-bisphosphate. Hybrid enzymes were produced from the wild-type subunit and a mutant subunit, whose substrate specificity was altered to that of malate dehydrogenase, and separated to analyze the substrate-induced homotropic activation mechanism. Oxamate, a competitive inhibitor of L-lactate dehydrogenase, was used to mimic the substrate-induced activation of the wild-type subunit as "a regulatory subunit." The malate dehydrogenase activity of the mutant subunit as "the catalytic subunit" of the hybrid enzymes was measured, and the activity of the mutant subunit was activated on the addition of oxamate. Thus, we directly observed the inter-subunit homotropic activation transmitted from the wild-type to the mutant subunit. Moreover, "isomeric" hybrid enzymes that have different structural subunit arrangements but identical subunit compositions showed identical kinetic natures. This indicates that the enzyme maintains its subunit symmetry during the allosteric transition.


Asunto(s)
L-Lactato Deshidrogenasa/química , Bifidobacterium/enzimología , Activación Enzimática , Isoenzimas , Isomerismo , Cinética , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Malato Deshidrogenasa/química , Modelos Biológicos , Mutación , Oxaloacetatos/farmacología , Multimerización de Proteína , Ácido Pirúvico/análogos & derivados , Ácido Pirúvico/farmacología , Proteínas Recombinantes/química
8.
Protein Eng ; 11(12): 1121-8, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9930661

RESUMEN

Xylanase C from Aspergillus kawachii has an optimum pH of 2.0 and is stable at pH 1.0. The crystal structure of xylanase C was determined at 2.0 A resolution (R-factor = 19.4%). The overall structure was similar to those of other family 11 xylanases. Asp37 and an acid-base catalyst, Glu170, are located at a hydrogen-bonding distance (2.8 A), as in other xylanases with low pH optima. Asp37 of xylanase C was replaced with asparagine and other residues by site-directed mutagenesis. Analyses of the wild-type and mutant enzymes showed that Asp37 is important for high enzyme activity at low pH. In the case of the asparagine mutant, the optimum pH shifted to 5.0 and the maximum specific activity decreased to about 15% of that of the wild-type enzyme. On structural comparison with xylanases with higher pH optima, another striking feature of the xylanase C structure was found; the enzyme has numerous acidic residues concentrated on the surface (so-called 'Ser/Thr surface' in most family 11 xylanases). The relationship of the stability against extreme pH conditions and high salt concentrations with the spatially biased distribution of charged residues on the proteins is discussed.


Asunto(s)
Ácido Aspártico , Cristalografía por Rayos X , Mutagénesis Sitio-Dirigida , Xilosidasas/química , Xilosidasas/metabolismo , Aspergillus/enzimología , Aspergillus niger/enzimología , Sitios de Unión , Catálisis , Cristalización , Disulfuros/química , Expresión Génica , Concentración de Iones de Hidrógeno , Modelos Moleculares , Saccharomyces cerevisiae/genética , Especificidad de la Especie , Electricidad Estática , Relación Estructura-Actividad , Xilano Endo-1,3-beta-Xilosidasa , Xilosidasas/genética
9.
J Biol Chem ; 271(41): 25611-6, 1996 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-8810336

RESUMEN

Subunit-hybrid enzymes of mutant tetrameric L-lactate dehydrogenases from Bifidobacterium longum were studied in an examination of the mechanism of allosteric activation by fructose 1,6-bisphosphate. We earlier developed an in vivo method for subunit hybridization in Escherichia coli and the hybrids formed were a mixture with different subunit compositions. The B. longum hybrids were separated by anion-exchange chromatography with a mutational tag. Hybrids formed between fructose 1,6-bisphosphate-desensitized subunits and wild-type subunits and also between fructose 1, 6-bisphosphate-desensitized subunits and catalytically inactive subunits. Kinetic analyses of the hybrid enzymes showed that (i) those residues from two symmetrically related subunits that constituted the fructose 1,6-bisphosphate-binding site could bind fructose 1,6-bisphosphate and activate the enzyme only if intact, (ii) hybrids with only one functional fructose 1, 6-bisphosphate-binding site were fully sensitive to fructose 1, 6-bisphosphate, but the allosteric equilibrium had shifted partially, and (iii) activation by fructose 1,6-bisphosphate at the fructose 1, 6-bisphosphate-binding site was transmitted to the active sites through a quaternary structural change, not through direct conformational change within a subunit. These results are evidence of the validity of the concerted allosteric model of this enzyme based on T- and R-state structures in the same crystal lattice proposed earlier.


Asunto(s)
Bifidobacterium/enzimología , Fructosadifosfatos/farmacología , L-Lactato Deshidrogenasa/química , L-Lactato Deshidrogenasa/metabolismo , Estructura Secundaria de Proteína , Regulación Alostérica , Sitio Alostérico , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Escherichia coli , Cinética , Sustancias Macromoleculares , Modelos Estructurales , Mutagénesis Sitio-Dirigida , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA