Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Inf Model ; 59(5): 1957-1964, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30742770

RESUMEN

Accurate hydrogen placement in molecular modeling is crucial for studying the interactions and dynamics of biomolecular systems. The carboxyl functional group is a prototypical example of a functional group that requires protonation during structure preparation. To our knowledge, when in their neutral form, carboxylic acids are typically protonated in the syn conformation by default in classical molecular modeling packages, with no consideration of alternative conformations, though we are not aware of any careful examination of this topic. Here, we investigate the general belief that carboxylic acids should always be protonated in the syn conformation. We calculate and compare the relative energetic stabilities of syn and anti acetic acid using ab initio quantum mechanical calculations and atomistic molecular dynamics simulations. We focus on the carboxyl torsional potential and configurations of microhydrated acetic acid from molecular dynamics simulations, probing the effects of solvent, force field (GAFF vs GAFF2), and partial charge assignment of acetic acid. We show that while the syn conformation is the preferred state, the anti state may in some cases also be present under normal NPT conditions in solution.


Asunto(s)
Acetatos/química , Ácidos Carboxílicos/química , Simulación de Dinámica Molecular , Teoría Cuántica , Conformación Molecular
2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 72(Pt 4): 439-59, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27484368

RESUMEN

The sixth blind test of organic crystal structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal and a bulky flexible molecule. This blind test has seen substantial growth in the number of participants, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and `best practices' for performing CSP calculations. All of the targets, apart from a single potentially disordered Z' = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms.

3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 72(Pt 4): 488-501, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27484371

RESUMEN

A non-polarizable force field based on atomic multipoles fit to reproduce experimental crystal properties and ab initio gas-phase dimers is described. The Ewald method is used to calculate both long-range electrostatic and 1/r(6) dispersion energies of crystals. The dispersion energy of a crystal calculated by a cutoff method is shown to converge slowly to the exact Ewald result. A method for constraining space-group symmetry during unit-cell optimization is derived. Results for locally optimizing 4427 unit cells including volume, cell parameters, unit-cell r.m.s.d. and CPU timings are given for both flexible and rigid molecule optimization. An algorithm for randomly generating rigid molecule crystals is described. Using the correct experimentally determined space group, the average and maximum number of random crystals needed to find the correct experimental structure is given for 2440 rigid single component crystals. The force field energy rank of the correct experimental structure is presented for the same set of 2440 rigid single component crystals assuming the correct space group. A complete crystal prediction is performed for two rigid molecules by searching over the 32 most probable space groups.

4.
J Comput Aided Mol Des ; 26(5): 577-82, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22366954

RESUMEN

A Merck molecular force field classical potential combined with Poisson-Boltzmann electrostatics (MMFF/PB) has been used to estimate the binding free energy of seven guest molecules (six tertiary amines and one primary amine) into a synthetic receptor (acyclic cucurbit[4]uril congener) and two benzimidazoles into cyclic cucurbit[7]uril (CB[7]) and cucurbit[8]uril (CB[8]) hosts. In addition, binding enthalpies for the benzimidazoles were calculated with density functional theory (DFT) using the B3LYP functional and a polarizable continuum model (PCM). Although in most cases the MMFF/PB approach returned reasonable agreements with the experiment (±2 kcal/mol), significant, much larger deviations were reported in the case of three host-guest pairs. All four binding enthalpy predictions with the DFT/PCM method suffered 70% or larger deviations from the calorimetry data. Results are discussed in terms of the molecular models used for guest-host complexation and the quality of the intermolecular potentials.


Asunto(s)
Aminas/química , Modelos Moleculares , Termodinámica , Bencimidazoles/química , Hidrocarburos Aromáticos con Puentes/química , Calorimetría , Imidazoles/química , Estructura Molecular
5.
J Chem Theory Comput ; 6(9): 2935-2947, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20856692

RESUMEN

Currently the Protein Data Bank (PDB) contains over 18,000 structures that contain a metal ion including Na, Mg, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, Ag, Cd, Ir, Pt, Au, and Hg. In general, carrying out classical molecular dynamics (MD) simulations of metalloproteins is a convoluted and time consuming process. Herein, we describe MCPB (Metal Center Parameter Builder), which allows one, to conveniently and rapidly incorporate metal ions using the bonded plus electrostatics model (Hoops et al., J. Am. Chem. Soc. 1991, 113, 8262-8270) into the AMBER Force Field (FF). MCPB was used to develop a Zinc FF, ZAFF, which is compatible with the existing AMBER FFs. The PDB was mined for all Zn containing structures with most being tetrahedrally bound. The most abundant primary shell ligand combinations were extracted and FFs were created. These include Zn bound to CCCC, CCCH, CCHH, CHHH, HHHH, HHHO, HHOO, HOOO, HHHD, and HHDD (O = water and the remaining are 1 letter amino acid codes). Bond and angle force constants and RESP charges were obtained from B3LYP/6-31G* calculations of model structures from the various primary shell combinations. MCPB and ZAFF can be used to create FFs for MD simulations of metalloproteins to study enzyme catalysis, drug design and metalloprotein crystal refinement.

6.
J Phys Chem A ; 113(37): 10096-103, 2009 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-19694482

RESUMEN

Accurate benchmark calculations of gas-phase basicities of small molecules are presented and compared with available experimental results. The optimized geometries and thermochemical analyses were obtained from MP2/aug-cc-pVTZ calculations. Two different ab initio electron-correlated methods MP2 and CCSD(T) were employed for subsequent gas-phase basicity calculations, and the single-point energies were extrapolated to the complete basis set (CBS) limit. The overall accuracy for different ab initio methods is compared, and the accuracy in descending order is CCSD(T)_CBS > CCSD(T)/aug-cc-pVDZ > (MP2/aug-cc-pVQZ approximately MP2_CBS) > HF/aug-cc-pVQZ. The best root-mean-squared-error obtained was 1.0 kcal mol(-1) at the CCSD(T)_CBS//MP2/aug-cc-pVTZ level for a test set of 41 molecules. Clearly, accurate calculations for the electron correlation energy are important for the theoretical prediction of molecular gas-phase basicities. However, conformational effects were also found to be relevant in several instances when more complicated molecules were examined.


Asunto(s)
Gases/química , Bibliotecas de Moléculas Pequeñas/química , Etilenos/química , Cianuro de Hidrógeno/química , Sulfuro de Hidrógeno/química , Modelos Moleculares , Conformación Molecular , Teoría Cuántica , Termodinámica , Agua/química
7.
J Phys Chem B ; 113(15): 5290-300, 2009 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-19320454

RESUMEN

Dispersion is well-known to be important in biological systems, but the effect of electron correlation in such systems remains unclear. In order to assess the relationship between the structure of a protein and its electron correlation energy, we employed both full system Hartree-Fock (HF) and second-order Møller-Plesset perturbation (MP2) calculations in conjunction with the Polarizable Continuum Model (PCM) on the native structures of two proteins and their corresponding computer-generated decoy sets. Because of the expense of the MP2 calculation, we have utilized the fragment molecular orbital method (FMO) in this study. We show that the sum of the Hartree-Fock (HF) energy and force field (LJ6)-derived dispersion energy (HF + LJ6) is well correlated with the energies obtained using second-order Møller-Plesset perturbation (MP2) theory. In one of the two examples studied, the correlation energy as well as the empirical dispersive energy term was able to discriminate between native and decoy structures. On the other hand, for the second protein we studied, neither the correlation energy nor dispersion energy showed discrimination capabilities; however, the ab initio MP2 energy and the HF+LJ6 both ranked the native structure correctly. Furthermore, when we randomly scrambled the Lennard-Jones parameters, the correlation between the MP2 energy and the sum of the HF energy and dispersive energy (HF+LJ6) significantly drops, which indicates that the choice of Lennard-Jones parameters is important.


Asunto(s)
Biología Computacional , Electrones , Pliegue de Proteína , Proteínas/química , Simulación por Computador , Modelos Moleculares , Teoría Cuántica , Reproducibilidad de los Resultados
8.
J Chem Phys ; 129(2): 025102, 2008 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-18624561

RESUMEN

An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring.


Asunto(s)
Simulación por Computador , Modelos Moleculares , Estructura Molecular , Espectroscopía Infrarroja por Transformada de Fourier
9.
J Chem Phys ; 124(9): 94109, 2006 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-16526847

RESUMEN

A new algorithm is presented to improve the efficiency of the computation of exchange-correlation contributions, a major time-consuming step in a density functional theory (DFT) calculation. The new method, called multiresolution exchange correlation (mrXC), takes advantage of the variation in resolution among the Gaussian basis functions and shifts the calculation associated with low-resolution (smooth) basis function pairs to an even-spaced cubic grid. The cubic grid is much less dense in the vicinity of the nuclei than the atom-centered grid and the computation on the former is shown to be much more efficient than on the latter. MrXC does not alter the formalism of the current standard algorithm based on the atom-centered grid (ACG), but instead employs two fast and accurate transformations between the ACG and the cubic grid. Preliminary results with local density approximation have shown that mrXC yields three to five times improvement in efficiency with negligible error. The extension to DFT functionals with generalized gradient approximation is also briefly discussed.


Asunto(s)
Algoritmos , Modelos Moleculares
10.
J Chem Phys ; 122(7): 074108, 2005 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15743222

RESUMEN

Coulomb interaction is one of the major time-consuming components in a density functional theory (DFT) calculation. In the last decade, dramatic progresses have been made to improve the efficiency of Coulomb calculation, including continuous fast multipole method (CFMM) and J-engine method, all developed first inside Q-Chem. The most recent development is the advent of Fourier transform Coulomb method developed by Fusti-Molnar and Pulay, and an improved version of the method has been recently implemented in Q-Chem. It replaces the least efficient part of the previous Coulomb methods with an accurate numerical integration scheme that scales in O(N2) instead of O(N4) with the basis size. The result is a much smaller slope in the linear scaling with respect to the molecular size and we will demonstrate through a series of benchmark calculations that it speeds up the calculation of Coulomb energy by several folds over the efficient existing code, i.e., the combination of CFMM and J-engine, without loss of accuracy. Furthermore, we will show that it is complementary to the latter and together the three methods offer the best performance for Coulomb part of DFT calculations, making the DFT calculations affordable for very large systems involving thousands of basis functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA