Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
J Pathol ; 263(2): 131-134, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38482738

RESUMEN

Gene disruption from double-strand DNA breaks within introns is a mechanism of inactivating the tumor suppressor TP53. This occurs more frequently in osteosarcoma and biliary adenocarcinoma compared with other cancer types. The patterns of intron breakpoints within TP53 do not correlate with prevalence, intron length, or overall genome-wide levels of rearrangements. Therefore, these breakpoints appear to be selected for reasons other than to disrupt TP53. A recent article published by Saba et al in The Journal of Pathology illustrates a benefit to having breakpoints within intron 1 using high-quality matched genomic and transcriptomic osteosarcoma sequencing data as well as in vitro validation. The authors describe how the rearrangement results in relocation of the TP53 promoter region to regions upstream of genes that encode members of cartilage, growth plate development, osteoclast formation, and other TP53-related pathways. The upregulation of these genes by the TP53 promoter are gain-of-function events that are likely to promote tumor development and growth. Therefore, this article presents a potential new paradigm in which a single mutation would result in both the loss of a tumor suppressor and the gain of an oncogenic program. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Intrones , Regiones Promotoras Genéticas , Proteína p53 Supresora de Tumor , Humanos , Regiones Promotoras Genéticas/genética , Proteína p53 Supresora de Tumor/genética , Intrones/genética , Osteosarcoma/genética , Osteosarcoma/patología , Mutación
2.
bioRxiv ; 2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37961165

RESUMEN

Intratumor heterogeneity (ITH) of tumor-infiltrated leukocytes (TILs) is an important phenomenon of cancer biology with potentially profound clinical impacts. Multi-region gene expression sequencing data provide a promising opportunity that allows for explorations of TILs and their intratumor heterogeneity for each subject. Although several existing methods are available to infer the proportions of TILs, considerable methodological gaps exist for evaluating intratumor heterogeneity of TILs with multi-region gene expression data. Here, we develop ICeITH, immune cell estimation reveals intratumor heterogeneity, a Bayesian hierarchical model that borrows cell type profiles as prior knowledge to decompose mixed bulk data while accounting for the within-subject correlations among tumor samples. ICeITH quantifies intratumor heterogeneity by the variability of targeted cellular compositions. Through extensive simulation studies, we demonstrate that ICeITH is more accurate in measuring relative cellular abundance and evaluating intratumor heterogeneity compared with existing methods. We also assess the ability of ICeITH to stratify patients by their intratumor heterogeneity score and associate the estimations with the survival outcomes. Finally, we apply ICeITH to two multi-region gene expression datasets from lung cancer studies to classify patients into different risk groups according to the ITH estimations of targeted TILs that shape either pro- or anti-tumor processes. In conclusion, ICeITH is a useful tool to evaluate intratumor heterogeneity of TILs from multi-region gene expression data.

3.
Ann Thorac Surg ; 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37806335

RESUMEN

BACKGROUND: The presence of lymphovascular invasion (LVI) in early esophageal adenocarcinoma (EAC) is associated with more aggressive disease. Molecular markers associated with LVI are still largely unknown. Using a combination of transcriptomic analysis and validation experiments, we sought to describe markers for LVI and survival. METHODS: We performed NanoString expression profiling using RNA from 60 EAC specimens collected from surgery-only cases between 2000 and 2012. Differentially expressed genes (DEGs) were correlated with pathologic characteristics (T and N status and presence of LVI). Kaplan-Meier and Cox regression analyses were used to correlate gene expression with overall survival. Expression of alanyl aminopeptidase, membrane (ANPEP)/CD13 was validated by immunohistochemistry (IHC) in EAC tissue microarray and in EAC cell lines. RESULTS: We identified >20 up-regulated DEGs in tumor samples containing LVI. Multivariable analysis showed depth of invasion and ANPEP/CD13 expression were independently associated with overall survival, whereas nodal status was not. IHC analysis demonstrated overexpression of the ANPEP/CD13 protein in dysplastic Barrett esophagus and EAC tumors. Kaplan-Meier analysis showed that patients with higher RNA expression and strongly positive ANPEP/CD13 membrane IHC-Histoscore staining have shorter survival (P = .002). Down-regulation of ANPEP/CD13 expression by short hairpin RNA vector reduces colony formation, migration, and invasion of FLO-1 EAC cells. Overexpression of CD13 in SKGT4 EAC cells increases colony formation, motility, and invasion in vitro. CONCLUSIONS: Elevated expression of ANPEP/CD13 indicates shorter survival of EAC patients and a more invasive phenotype of cancer cells in vitro. Validation in a larger sample group is required to better understand the clinical significance of ANPEP/CD13 and other candidate genes.

4.
HGG Adv ; 4(4): 100224, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37593416

RESUMEN

Rhabdomyosarcoma accounts for roughly 1% of adult sarcomas, with pleomorphic rhabdomyosarcoma (PRMS) as the most common subtype. Survival outcomes remain poor for patients with PRMS, and little is known about the molecular drivers of this disease. To better characterize PRMS, we performed a broad array of genomic and immunostaining analyses on 25 patient samples. In terms of gene expression and methylation, PRMS clustered more closely with other complex karyotype sarcomas than with pediatric alveolar and embryonal rhabdomyosarcoma. Immune infiltrate levels in PRMS were among the highest observed in multiple sarcoma types and contrasted with low levels in other rhabdomyosarcoma subtypes. Lower immune infiltrate was associated with complete loss of both TP53 and RB1. This comprehensive characterization of the genetic, epigenetic, and immune landscape of PRMS provides a roadmap for improved prognostications and therapeutic exploration.


Asunto(s)
Rabdomiosarcoma Embrionario , Rabdomiosarcoma , Neoplasias de los Tejidos Blandos , Adulto , Humanos , Niño , Rabdomiosarcoma/genética , Rabdomiosarcoma Embrionario/genética , Genómica , Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas , Proteínas de Unión a Retinoblastoma/genética
7.
Mol Cancer Res ; 21(5): 483-494, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37068116

RESUMEN

Adult-type granulosa cell tumors (aGCT) are rare ovarian sex cord tumors with few effective treatments for recurrent disease. The objective of this study was to characterize the tumor microenvironment (TME) of primary and recurrent aGCTs and to identify correlates of disease recurrence. Total RNA sequencing (RNA-seq) was performed on 24 pathologically confirmed, cryopreserved aGCT samples, including 8 primary and 16 recurrent tumors. After read alignment and quality-control filtering, DESeq2 was used to identify differentially expressed genes (DEG) between primary and recurrent tumors. Functional enrichment pathway analysis and gene set enrichment analysis was performed using "clusterProfiler" and "GSVA" R packages. TME composition was investigated through the analysis and integration of multiple published RNA-seq deconvolution algorithms. TME analysis results were externally validated using data from independent previously published RNA-seq datasets. A total of 31 DEGs were identified between primary and recurrent aGCTs. These included genes with known function in hormone signaling such as LHCGR and INSL3 (more abundant in primary tumors) and CYP19A1 (more abundant in recurrent tumors). Gene set enrichment analysis revealed that primarily immune-related and hormone-regulated gene sets expression was increased in recurrent tumors. Integrative TME analysis demonstrated statistically significant depletion of cancer-associated fibroblasts in recurrent tumors. This finding was confirmed in multiple independent datasets. IMPLICATIONS: Recurrent aGCTs exhibit alterations in hormone pathway gene expression as well as decreased infiltration of cancer-associated fibroblasts, suggesting dual roles for hormonal signaling and TME remodeling underpinning disease relapse.


Asunto(s)
Tumor de Células de la Granulosa , Adulto , Femenino , Humanos , Tumor de Células de la Granulosa/genética , Tumor de Células de la Granulosa/patología , Microambiente Tumoral/genética , Recurrencia Local de Neoplasia/genética , Hormonas
8.
Front Immunol ; 14: 1051431, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063829

RESUMEN

Background: Squamous cell carcinoma of the anus (SCCA) is a rare gastrointestinal cancer. Factors associated with progression of HPV infection to anal dysplasia and cancer are unclear and screening guidelines and approaches for anal dysplasia are less clear than for cervical dysplasia. One potential contributing factor is the anorectal microbiome. In this study, we aimed to identify differences in anal microbiome composition in the settings of HPV infection, anal dysplasia, and anal cancer in this rare disease. Methods: Patients were enrolled in two prospective studies. Patients with anal dysplasia were part of a cross-sectional cohort that enrolled women with high-grade lower genital tract dysplasia. Anorectal tumor swabs were prospectively collected from patients with biopsy-confirmed locally advanced SCCA prior to receiving standard-of-care chemoradiotherapy (CRT). Patients with high-grade lower genital tract dysplasia without anal dysplasia were considered high-risk (HR Normal). 16S V4 rRNA Microbiome sequencing was performed for anal swabs. Alpha and Beta Diversity and composition were compared for HR Normal, anal dysplasia, and anal cancer. Results: 60 patients with high-grade lower genital tract dysplasia were initially enrolled. Seven patients had concurrent anal dysplasia and 44 patients were considered HR Normal. Anorectal swabs from 21 patients with localized SCCA were included, sequenced, and analyzed in the study. Analysis of weighted and unweighted UniFrac distances demonstrated significant differences in microbial community composition between anal cancer and HR normal (p=0.018). LEfSe identified that all three groups exhibited differential enrichment of specific taxa. Peptoniphilus (p=0.028), Fusobacteria (p=0.0295), Porphyromonas (p=0.034), and Prevotella (p=0.029) were enriched in anal cancer specimens when compared to HR normal. Conclusion: Although alpha diversity was similar between HR Normal, dysplasia and cancer patients, composition differed significantly between the three groups. Increased anorectal Peptoniphilus, Fusobacteria, Porphyromonas, and Prevotella abundance were associated with anal cancer. These organisms have been reported in various gastrointestinal cancers with roles in facilitating the proinflammatory microenvironment and neoplasia progression. Future work should investigate a potential role of microbiome analysis in screening for anal dysplasia and investigation into potential mechanisms of how these microbial imbalances influence the immune system and anal carcinogenesis.


Asunto(s)
Neoplasias del Ano , Carcinoma de Células Escamosas , Microbiota , Infecciones por Papillomavirus , Humanos , Femenino , Estudios Prospectivos , Estudios Transversales , Carcinoma de Células Escamosas/complicaciones , Microambiente Tumoral
10.
Mod Pathol ; 36(1): 100028, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36788067

RESUMEN

Our understanding of the molecular mechanisms underlying postsurgical recurrence of non-small cell lung cancer (NSCLC) is rudimentary. Molecular and T cell repertoire intratumor heterogeneity (ITH) have been reported to be associated with postsurgical relapse; however, how ITH at the cellular level impacts survival is largely unknown. Here we report the analysis of 2880 multispectral images representing 14.2% to 27% of tumor areas from 33 patients with stage I NSCLC, including 17 cases (relapsed within 3 years after surgery) and 16 controls (without recurrence ≥5 years after surgery) using multiplex immunofluorescence. Spatial analysis was conducted to quantify the minimum distance between different cell types and immune cell infiltration around malignant cells. Immune ITH was defined as the variance of immune cells from 3 intratumor regions. We found that tumors from patients having relapsed display different immune biology compared with nonrecurrent tumors, with a higher percentage of tumor cells and macrophages expressing PD-L1 (P =.031 and P =.024, respectively), along with an increase in regulatory T cells (Treg) (P =.018), antigen-experienced T cells (P =.025), and effector-memory T cells (P =.041). Spatial analysis revealed that a higher level of infiltration of PD-L1+ macrophages (CD68+PD-L1+) or antigen-experienced cytotoxic T cells (CD3+CD8+PD-1+) in the tumor was associated with poor overall survival (P =.021 and P =.006, respectively). A higher degree of Treg ITH was associated with inferior recurrence-free survival regardless of tumor mutational burden (P =.022), neoantigen burden (P =.021), genomic ITH (P =.012) and T cell repertoire ITH (P =.001). Using multiregion multiplex immunofluorescence, we characterized ITH at the immune cell level along with whole exome and T cell repertoire sequencing from the same tumor regions. This approach highlights the role of immunoregulatory and coinhibitory signals as well as their spatial distribution and ITH that define the hallmarks of tumor relapse of stage I NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Antígeno B7-H1 , Recurrencia Local de Neoplasia/genética , Linfocitos T Citotóxicos/patología , Linfocitos T CD8-positivos
12.
Mol Oncol ; 17(8): 1531-1544, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36703611

RESUMEN

The molecular landscape and the intratumor heterogeneity (ITH) architecture of gastric linitis plastica (LP) are poorly understood. We performed whole-exome sequencing (WES) and T-cell receptor (TCR) sequencing on 40 tumor regions from four LP patients. The landscape and ITH at the genomic and immunological levels in LP tumors were compared with multiple cancers that have previously been reported. The lymphocyte infiltration was further assessed by immunohistochemistry (IHC) in LP tumors. In total, we identified 6339 non-silent mutations from multi-samples, with a median tumor mutation burden (TMB) of 3.30 mutations per Mb, comparable to gastric adenocarcinoma from the Cancer Genome Atlas (TCGA) cohort (P = 0.53). An extremely high level of genomic ITH was observed, with only 12.42%, 5.37%, 5.35%, and 30.67% of mutations detectable across 10 regions within the same tumors of each patient, respectively. TCR sequencing revealed that TCR clonality was substantially lower in LP than in multi-cancers. IHC using antibodies against CD4, CD8, and PD-L1 demonstrated scant T-cell infiltration in the four LP tumors. Furthermore, profound TCR ITH was observed in all LP tumors, with no T-cell clones shared across tumor regions in any of the patients, while over 94% of T-cell clones were restricted to individual tumor regions. The Morisita overlap index (MOI) ranged from 0.21 to 0.66 among multi-regions within the same tumors, significantly lower than that of lung cancer (P = 0.002). Our results show that LP harbored extremely high genomic and TCR ITH and suppressed T-cell infiltration, suggesting a potential contribution to the frequent recurrence and poor therapeutic response of this adenocarcinoma.


Asunto(s)
Linitis Plástica , Neoplasias Gástricas , Humanos , Linitis Plástica/genética , Linitis Plástica/inmunología , Linitis Plástica/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Secuenciación del Exoma , Heterogeneidad Genética , Genes Codificadores de los Receptores de Linfocitos T , Microambiente Tumoral , Mutación
13.
J Transl Med ; 20(1): 606, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36528667

RESUMEN

BACKGROUND: Low-grade serous ovarian cancer (LGSOC) is a rare disease that occurs more frequently in younger women than those with high-grade disease. The current treatment is suboptimal and a better understanding of the molecular pathogenesis of this disease is required. In this study, we compared the proteogenomic analyses of LGSOCs from short- and long-term survivors (defined as < 40 and > 60 months, respectively). Our goal was to identify novel mutations, proteins, and mRNA transcripts that are dysregulated in LGSOC, particularly in short-term survivors. METHODS: Initially, targeted sequencing of 409 cancer-related genes was performed on 22 LGSOC and 6 serous borderline ovarian tumor samples. Subsequently, whole-genome sequencing analysis was performed on 14 LGSOC samples (7 long-term survivors and 7 short-term survivors) with matched normal tissue samples. RNA sequencing (RNA-seq), quantitative proteomics, and phosphoproteomic analyses were also performed. RESULTS: We identified single-nucleotide variants (SNVs) (range: 5688-14,833 per sample), insertion and deletion variants (indels) (range: 880-1065), and regions with copy number variants (CNVs) (range: 62-335) among the 14 LGSOC samples. Among all SNVs and indels, 2637 mutation sites were found in the exonic regions. The allele frequencies of the detected variants were low (median12%). The identified recurrent nonsynonymous missense mutations included KRAS, NRAS, EIF1AX, UBR5, and DNM3 mutations. Mutations in DNM3 and UBR5 have not previously been reported in LGSOC. For the two samples, somatic DNM3 nonsynonymous missense mutations in the exonic region were validated using Sanger sequencing. The third sample contained two missense mutations in the intronic region of DNM3, leading to a frameshift mutation detected in RNA transcripts in the RNA-seq data. Among the 14 LGSOC samples, 7754 proteins and 9733 phosphosites were detected by global proteomic analysis. Some of these proteins and signaling pathways, such as BST1, TBXAS1, MPEG1, HBA1, and phosphorylated ASAP1, are potential therapeutic targets. CONCLUSIONS: This is the first study to use whole-genome sequencing to detect somatic mutations in LGSOCs with matched normal tissues. We detected and validated novel mutations in DNM3, which were present in 3 of the 14 samples analyzed. Additionally, we identified novel indels, regions with CNVs, dysregulated mRNA, dysregulated proteins, and phosphosites that are more prevalent in short-term survivors. This integrated proteogenomic analysis can guide research into the pathogenesis and treatment of LGSOC.


Asunto(s)
Cistadenocarcinoma Seroso , Dinamina III , Neoplasias Ováricas , Femenino , Humanos , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patología , Dinamina III/genética , Multiómica , Mutación/genética , Clasificación del Tumor , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proteómica , ARN Mensajero/genética , ARN Mensajero/uso terapéutico , Sobrevivientes
14.
Nature ; 612(7940): 564-572, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477537

RESUMEN

Higher-order chromatin structure is important for the regulation of genes by distal regulatory sequences1,2. Structural variants (SVs) that alter three-dimensional (3D) genome organization can lead to enhancer-promoter rewiring and human disease, particularly in the context of cancer3. However, only a small minority of SVs are associated with altered gene expression4,5, and it remains unclear why certain SVs lead to changes in distal gene expression and others do not. To address these questions, we used a combination of genomic profiling and genome engineering to identify sites of recurrent changes in 3D genome structure in cancer and determine the effects of specific rearrangements on oncogene activation. By analysing Hi-C data from 92 cancer cell lines and patient samples, we identified loci affected by recurrent alterations to 3D genome structure, including oncogenes such as MYC, TERT and CCND1. By using CRISPR-Cas9 genome engineering to generate de novo SVs, we show that oncogene activity can be predicted by using 'activity-by-contact' models that consider partner region chromatin contacts and enhancer activity. However, activity-by-contact models are only predictive of specific subsets of genes in the genome, suggesting that different classes of genes engage in distinct modes of regulation by distal regulatory elements. These results indicate that SVs that alter 3D genome organization are widespread in cancer genomes and begin to illustrate predictive rules for the consequences of SVs on oncogene activation.


Asunto(s)
Variación Estructural del Genoma , Neoplasias , Proteínas Oncogénicas , Oncogenes , Humanos , Cromatina/genética , Reordenamiento Génico/genética , Variación Estructural del Genoma/genética , Neoplasias/genética , Neoplasias/patología , Oncogenes/genética , Proteínas Oncogénicas/química , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Cromosomas Humanos/genética , Línea Celular Tumoral , Elementos de Facilitación Genéticos/genética , Modelos Genéticos
15.
JAMA Netw Open ; 5(10): e2236626, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36239936

RESUMEN

Importance: Despite similar histologic appearance among high-grade serous ovarian cancers (HGSOCs), clinical observations suggest vast differences in gross appearance. There is currently no systematic framework by which to classify HGSOCs according to their gross morphologic characteristics. Objective: To develop and characterize a gross morphologic classification system for HGSOC. Design, Setting, and Participants: This cohort study included patients with suspected advanced-stage ovarian cancer who presented between April 1, 2013, and August 5, 2016, to the University of Texas MD Anderson Cancer Center, a large referral center. Patients underwent laparoscopic assessment of disease burden before treatment and received a histopathologic diagnosis of HGSOC. Researchers assigning morphologic subtype and performing molecular analyses were blinded to clinical outcomes. Data analysis was performed between April 2020 and November 2021. Exposures: Gross tumor morphologic characteristics. Main Outcomes and Measures: Clinical outcomes and multiomic profiles of representative tumor samples of type I or type II morphologic subtypes were compared. Results: Of 112 women (mean [SD] age 62.7 [9.7] years) included in the study, most patients (84% [94]) exhibited a predominant morphologic subtype and many (63% [71]) had a uniform morphologic subtype at all involved sites. Compared with those with uniform type I morphologic subtype, patients with uniform type II morphologic subtype were more likely to have a favorable Fagotti score (83% [19 of 23] vs 46% [22 of 48]; P = .004) and thus to be triaged to primary tumor reductive surgery. Similarly, patients with uniform type II morphologic subtype also had significantly higher mean (SD) estimated blood loss (639 [559; 95% CI, 391-887] mL vs 415 [527; 95% CI, 253-577] mL; P = .006) and longer mean (SD) operative time (408 [130; 95% CI, 350-466] minutes vs 333 [113; 95% CI, 298-367] minutes; P = .03) during tumor reductive surgery. Type I tumors had enrichment of epithelial-mesenchymal transition (false discovery rate [FDR] q-value, 3.10 × 10-24), hypoxia (FDR q-value, 1.52 × 10-5), and angiogenesis pathways (FDR q-value, 2.11 × 10-2), whereas type II tumors had enrichment of pathways related to MYC signaling (FDR q-value, 2.04 × 10-9) and cell cycle progression (FDR q-value, 1.10 × 10-5) by integrated proteomic and transcriptomic analysis. Abundances of metabolites and lipids also differed between the 2 morphologic subtypes. Conclusions and Relevance: This study identified 2 novel, gross morphologic subtypes of HGSOC, each with unique clinical features and molecular signatures. The findings may have implications for triaging patients to surgery or chemotherapy, identifying outcomes, and developing tailored therapeutic strategies.


Asunto(s)
Neoplasias Ováricas , Estudios de Cohortes , Femenino , Humanos , Lípidos , Persona de Mediana Edad , Neoplasias Ováricas/patología , Proteómica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal
16.
Cancers (Basel) ; 14(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35892848

RESUMEN

Patients with high-grade serous ovarian cancer (HGSC) who have no visible residual disease (R0) after primary surgery have the best clinical outcomes, followed by patients who undergo neoadjuvant chemotherapy (NACT) and have a response enabling interval cytoreductive surgery. Clinically useful biomarkers for predicting these outcomes are still lacking. Extracellular vesicles (EVs) have been recognized as liquid biopsy-based biomarkers for early cancer detection and disease surveillance in other disease settings. In this study, we performed extensive molecular characterization of serum-derived EVs and correlated the findings with therapeutic outcomes in patients with HGSC. Using EV-DNA whole-genome sequencing and EV-RNA sequencing, we identified distinct somatic EV-DNA alterations in cancer-hallmark genes and in ovarian cancer genes, as well as significantly altered oncogenic pathways between the R0 group and NACT groups. We also found significantly altered EV-RNA transcriptomic variations and enriched pathways between the groups. Taken together, our data suggest that the molecular characteristics of EVs could enable prediction of patients with HGSC who could undergo R0 surgery or respond to chemotherapy.

17.
Nat Commun ; 13(1): 4000, 2022 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810190

RESUMEN

Melanoma cells display distinct intrinsic phenotypic states. Here, we seek to characterize the molecular regulation of these states using multi-omic analyses of whole exome, transcriptome, microRNA, long non-coding RNA and DNA methylation data together with reverse-phase protein array data on a panel of 68 highly annotated early passage melanoma cell lines. We demonstrate that clearly defined cancer cell intrinsic transcriptomic programs are maintained in melanoma cells ex vivo and remain highly conserved within melanoma tumors, are associated with distinct immune features within tumors, and differentially correlate with checkpoint inhibitor and adoptive T cell therapy efficacy. Through integrative analyses we demonstrate highly complex multi-omic regulation of melanoma cell intrinsic programs that provide key insights into the molecular maintenance of phenotypic states. These findings have implications for cancer biology and the identification of new therapeutic strategies. Further, these deeply characterized cell lines will serve as an invaluable resource for future research in the field.


Asunto(s)
Melanoma , MicroARNs , ARN Largo no Codificante , Metilación de ADN , Humanos , Melanoma/metabolismo , Melanoma/patología , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Transcriptoma
18.
Nat Commun ; 13(1): 3057, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650195

RESUMEN

Desmoplastic small round cell tumor (DSRCT) is an aggressive, usually incurable sarcoma subtype that predominantly occurs in post-pubertal young males. Recent evidence suggests that the androgen receptor (AR) can promote tumor progression in DSRCTs. However, the mechanism of AR-induced oncogenic stimulation remains undetermined. Herein, we demonstrate that enzalutamide and AR-directed antisense oligonucleotides (AR-ASO) block 5α-dihydrotestosterone (DHT)-induced DSRCT cell proliferation and reduce xenograft tumor burden. Gene expression analysis and chromatin immunoprecipitation sequencing (ChIP-seq) were performed to elucidate how AR signaling regulates cellular epigenetic programs. Remarkably, ChIP-seq revealed novel DSRCT-specific AR DNA binding sites adjacent to key oncogenic regulators, including WT1 (the C-terminal partner of the pathognomonic fusion protein) and FOXF1. Additionally, AR occupied enhancer sites that regulate the Wnt pathway, neural differentiation, and embryonic organ development, implicating AR in dysfunctional cell lineage commitment. Our findings have direct clinical implications given the widespread availability of FDA-approved androgen-targeted agents used for prostate cancer.


Asunto(s)
Antagonistas de Receptores Androgénicos , Tumor Desmoplásico de Células Pequeñas Redondas , Receptores Androgénicos , Antagonistas de Receptores Androgénicos/farmacología , Andrógenos , Animales , Línea Celular Tumoral , Tumor Desmoplásico de Células Pequeñas Redondas/genética , Humanos , Masculino , Oligonucleótidos Antisentido/farmacología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Nat Biotechnol ; 40(11): 1624-1633, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35697807

RESUMEN

Single-cell RNA sequencing studies have suggested that total mRNA content correlates with tumor phenotypes. Technical and analytical challenges, however, have so far impeded at-scale pan-cancer examination of total mRNA content. Here we present a method to quantify tumor-specific total mRNA expression (TmS) from bulk sequencing data, taking into account tumor transcript proportion, purity and ploidy, which are estimated through transcriptomic/genomic deconvolution. We estimate and validate TmS in 6,590 patient tumors across 15 cancer types, identifying significant inter-tumor variability. Across cancers, high TmS is associated with increased risk of disease progression and death. TmS is influenced by cancer-specific patterns of gene alteration and intra-tumor genetic heterogeneity as well as by pan-cancer trends in metabolic dysregulation. Taken together, our results indicate that measuring cell-type-specific total mRNA expression in tumor cells predicts tumor phenotypes and clinical outcomes.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Heterogeneidad Genética , Genómica , ARN Mensajero/genética , Progresión de la Enfermedad
20.
Nat Genet ; 54(6): 850-860, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35681052

RESUMEN

Ductal carcinoma in situ (DCIS) is the most common form of preinvasive breast cancer and, despite treatment, a small fraction (5-10%) of DCIS patients develop subsequent invasive disease. A fundamental biologic question is whether the invasive disease arises from tumor cells in the initial DCIS or represents new unrelated disease. To address this question, we performed genomic analyses on the initial DCIS lesion and paired invasive recurrent tumors in 95 patients together with single-cell DNA sequencing in a subset of cases. Our data show that in 75% of cases the invasive recurrence was clonally related to the initial DCIS, suggesting that tumor cells were not eliminated during the initial treatment. Surprisingly, however, 18% were clonally unrelated to the DCIS, representing new independent lineages and 7% of cases were ambiguous. This knowledge is essential for accurate risk evaluation of DCIS, treatment de-escalation strategies and the identification of predictive biomarkers.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal no Infiltrante , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/genética , Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/patología , Femenino , Genómica , Humanos , Recurrencia Local de Neoplasia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...