Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 1939, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253585

RESUMEN

The exploration of metal-insulator transitions to produce field-induced reversible resistive switching effects has been a longstanding pursuit in materials science. Although the resistive switching effect in strongly correlated oxides is often associated with the creation or annihilation of oxygen vacancies, the underlying mechanisms behind this phenomenon are complex and, in many cases, still not clear. This study focuses on the analysis of the superconducting performance of cuprate YBa2Cu3O7-δ (YBCO) devices switched to different resistive states through gate voltage pulses. The goal is to evaluate the effect of field-induced oxygen diffusion on the magnetic field and angular dependence of the critical current density and identify the role of induced defects in the switching performance. Transition electron microscopy measurements indicate that field-induced transition to high resistance states occurs through the generation of YBa2Cu4O7 (Y124) intergrowths with a large amount of oxygen vacancies, in agreement with the obtained critical current density dependences. These results have significant implications for better understanding the mechanisms of field-induced oxygen doping in cuprate superconductors and their role on the superconducting performance.

2.
Inorg Chem ; 62(42): 17362-17370, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37822252

RESUMEN

Europium tantalum perovskite oxynitrides were prepared by a new high-temperature solid-state synthesis under N2 or N2/H2 gas. The nitrogen stoichiometry was tuned from 0.63 to 1.78 atoms per Eu or Ta atom, starting with appropriate N/O ratios in the mixture of the reactants Eu2O3, EuN and Ta3N5, or Eu2O3 and TaON, which was treated at 1200 °C for 3 h. Two phases were isolated with compositions EuTaO2.37N0.63 and Eu3Ta3O3.66N5.34, showing different crystal structures and magnetic properties. Electron diffraction and Rietveld refinement of synchrotron radiation X-ray diffraction indicated that EuTaO2.37N0.63 is a simple perovskite with cubic Pm3̅m structure and cell parameter a = 4.02043(1) Å, whereas the new compound Eu3Ta3O3.66N5.34 is the first example of a triple perovskite oxynitride and shows space group P4/mmm with crystal parameters a = 3.99610(2), c = 11.96238(9) Å. The tripling of the c-axis in this phase is a consequence of the partial ordering of europium atoms with different charges in two A sites of the perovskite structure with relative ratio 2:1, where the formal oxidation states +3 and +2 are respectively dominant. Magnetic data provide evidence of ferromagnetic ordering developing at low temperatures in both oxynitrides, with saturation magnetization of about 6 µB and 3 µB per Eu ion for EuTaO2.37N0.63 and the triple perovskite Eu3Ta3O3.66N5.34 respectively, and corresponding Curie temperatures of about 7 and 3 K, which is in agreement with the lower proportion of Eu2+ in the latter compound.

3.
ACS Appl Nano Mater ; 5(2): 2113-2125, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35252779

RESUMEN

Multifunctional magnetic nanocomposites based on mesoporous silica have a wide range of potential applications in catalysis, biomedicine, or sensing. Such particles combine responsiveness to external magnetic fields with other functionalities endowed by the agents loaded inside the pores or conjugated to the particle surface. Different applications might benefit from specific particle morphologies. In the case of biomedical applications, mesoporous silica nanospheres have been extensively studied while nanorods, with a more challenging preparation, have attracted much less attention despite the positive impact on the therapeutic performance shown by seminal studies. Here, we report on a sol-gel synthesis of mesoporous rodlike silica particles of two distinct lengths (1.4 and 0.9 µm) and aspect ratios (4.7 and 2.2) using Pluronic P123 as a structure-directing template and rendering ∼1 g of rods per batch. Iron oxide nanoparticles have been synthesized within the pores yielding maghemite (γ-Fe2O3) nanocrystals of elongated shape (∼7 nm × 5 nm) with a [110] preferential orientation along the rod axis and a superparamagnetic character. The performance of the rods as T2-weighted MRI contrast agents has also been confirmed. In a subsequent step, the mesoporous silica rods were loaded with a cerium compound and their surface was functionalized with fluorophores (fluorescamine and Cyanine5) emitting at λ = 525 and 730 nm, respectively, thus highlighting the possibility of multiple imaging modalities. The biocompatibility of the rods was evaluated in vitro in a zebrafish (Danio rerio) liver cell line (ZFL), with results showing that neither long nor short rods with magnetic particles caused cytotoxicity in ZFL cells for concentrations up to 50 µg/ml. We advocate that such nanocomposites can find applications in medical imaging and therapy, where the influence of shape on performance can be also assessed.

4.
Nanoscale ; 14(6): 2337-2343, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35088065

RESUMEN

The metastable orthorhombic phase of Hf0.5Zr0.5O2 (HZO) can be stabilized in thin films on La0.67Sr0.33MnO3 (LSMO) buffered (001)-oriented SrTiO3 (STO) by intriguing epitaxy that results in (111)-HZO oriented growth and robust ferroelectric properties. Here, we show that the orthorhombic phase can also be epitaxially stabilized on LSMO/STO(110), presenting the same out-of-plane (111) orientation but a different distribution of the in-plane crystalline domains. The remanent polarization of HZO films with a thickness of less than 7 nm on LSMO/STO(110) is 33 µC cm-3, which corresponds to a 50% improvement over equivalent films on LSMO/STO(001). Furthermore, HZO on LSMO/STO(110) presents higher endurance, switchable polarization is still observed up to 4 × 1010 cycles, and retention of more than 10 years. These results demonstrate that tuning the epitaxial growth of ferroelectric HfO2, here using STO(110) substrates, allows the improvement of functional properties of relevance for memory applications.

5.
Nanoscale ; 13(21): 9615-9625, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-33982736

RESUMEN

Ferroelectric oxides have attracted much attention due to their wide range of applications, particularly in electronic devices such as nonvolatile memories and tunnel junctions. As a result, the monolithic integration of these materials into silicon technology and their nanostructuration to develop alternative cost-effective processes are among the central points in the current technology. In this work, we used a chemical route to obtain nanowire thin films of a novel Sr1+δMn8O16 (SMO) hollandite-type manganese oxide on silicon. Scanning transmission electron microscopy combined with crystallographic computing reveals a crystal structure comprising hollandite and pyrolusite units sharing the edges of their MnO6 octahedra, resulting in three types of tunnels arranged along the c axis, where the ordering of the Sr atoms produces natural symmetry breaking. The novel structure gives rise to ferroelectricity and piezoelectricity, as revealed by local direct piezoelectric force microscopy measurements, which confirmed the ferroelectric nature of the SMO nanowire thin films at room temperature and showed a piezoelectric coefficient d33 value of 22 ± 6 pC N-1. Moreover, we proved that flexible vertical SMO nanowires can be harvested providing an electrical output energy through the piezoelectric effect, showing excellent deformability and high interface recombination. This work indicates the possibility of engineering the integration of 1D manganese oxides on silicon, a step which precedes the production of microelectronic devices.

6.
Angew Chem Int Ed Engl ; 60(26): 14609-14619, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33826206

RESUMEN

The role of the perovskite lattice oxygen in the oxygen evolution reaction (OER) is systematically studied in the PrBaCo2 O5+δ family. The reduced number of physical/chemical variables combined with in-depth characterizations such as neutron dif-fraction, O K-edge X-ray absorption spectroscopy (XAS), electron energy loss spectroscopy (EELS), magnetization and scanning transmission electron microscopy (STEM) studies, helps investigating the complex correlation between OER activity and a single perovskite property, such as the oxygen content. Larger amount of oxygen vacancies appears to facilitate the OER, possibly contributing to the mechanism involving the oxidation of lattice oxygen, i.e., the lattice oxygen evolution reaction (LOER). Furthermore, not only the number of vacancies but also their local arrangement in the perovskite lattice influences the OER activity, with a clear drop for the more stable, ordered stoichiometry.

7.
Angew Chem Int Ed Engl ; 59(42): 18395-18399, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-32649790

RESUMEN

Non-centrosymmetric polar compounds have important technological properties. Reported perovskite oxynitrides show centrosymmetric structures, and for some of them high permittivities have been observed and ascribed to local dipoles induced by partial order of nitride and oxide. Reported here is the first hexagonal perovskite oxynitride BaWON2 , which shows a polar 6H polytype. Synchrotron X-ray and neutron powder diffraction, and annular bright-field in scanning transmission electron microscopy indicate that it crystalizes in the non-centrosymmetric space group P63 mc, with a total order of nitride and oxide at two distinct coordination environments in cubic and hexagonal packed BaX3 layers. A synergetic second-order Jahn-Teller effect, supported by first principle calculations, anion order, and electrostatic repulsions between W6+ cations, induce large distortions at two inequivalent face-sharing octahedra that lead to long-range ordered dipoles and spontaneous polarization along the c axis. The new oxynitride is a semiconductor with a band gap of 1.1 eV and a large permittivity.

8.
Phys Rev Lett ; 124(24): 246804, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32639817

RESUMEN

Persistent photoconductance is a phenomenon found in many semiconductors, by which light induces long-lived excitations in electronic states. Commonly, persistent photoexcitation leads to an increase of carriers (accumulation), though occasionally it can be negative (depletion). Here, we present the quantum well at the LaAlO_{3}/SrTiO_{3} interface, where in addition to photoinduced accumulation, a secondary photoexcitation enables carrier depletion. The balance between both processes is wavelength dependent, and allows tunable accumulation or depletion in an asymmetric manner, depending on the relative arrival time of photons of different frequencies. We use Green's function formalism to describe this unconventional photoexcitation, which paves the way to an optical implementation of neurobiologically inspired spike-timing-dependent plasticity.

9.
Nanoscale ; 12(10): 5922-5931, 2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32108218

RESUMEN

It is well known that in the high-temperature superconductor YBa2Cu3O7-x (YBCO), oxygen vacancies (VO) control the carrier concentration, its critical current density and transition temperature. In this work, it is revealed that VO also allows the accommodation of local strain fields caused by large-scale defects within the crystal. We show that the nanoscale strain associated with Y2Ba4Cu8O16 (Y124) intergrowths-that are common defects in YBCO-strongly affect the venue and concentration of VO. Local probe measurements in conjunction with density-functional-theory calculations indicate a strain-driven reordering of VO from the commonly observed CuO chains towards the bridging apical sites located in the BaO plane and bind directly to the superconducting CuO2 planes. Our findings have strong implications on the physical properties of the YBCO, as the presence of apical VO alters the transfer of carriers to the CuO2 planes, confirmed by changes in the Cu and O core-loss edge probed using electron energy loss spectroscopy, and creates structural changes that affect the Cu-O bonds in the superconducting planes. In addition, the revelation of apical VO also has implications on modulating critical current densities and enhancing vortex pinning.

10.
ACS Appl Mater Interfaces ; 12(4): 4732-4740, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31880913

RESUMEN

The monolithic integration of sub-micron quartz structures on silicon substrates is a key issue for the future development of piezoelectric devices as prospective sensors with applications based on the operation in the high-frequency range. However, to date, it has not been possible to make existing quartz manufacturing methods compatible with integration on silicon and structuration by top-down lithographic techniques. Here, we report an unprecedented large-scale fabrication of ordered arrays of piezoelectric epitaxial quartz nanostructures on silicon substrates by the combination of soft-chemistry and three lithographic techniques: (i) laser interference lithography, (ii) soft nanoimprint lithography on Sr-doped SiO2 sol-gel thin films, and (iii) self-assembled SrCO3 nanoparticle reactive nanomasks. Epitaxial α-quartz nanopillars with different diameters (from 1 µm down to 50 nm) and heights (up to 2 µm) were obtained. This work demonstrates the complementarity of soft-chemistry and top-down lithographic techniques for the patterning of epitaxial quartz thin films on silicon while preserving its epitaxial crystallinity and piezoelectric properties. These results open up the opportunity to develop a cost-effective on-chip integration of nanostructured piezoelectric α-quartz MEMS with enhanced sensing properties of relevance in different fields of application.

11.
Nanoscale ; 11(44): 21275-21283, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31696194

RESUMEN

Ferroelectrics are characterized by domain structures as are other ferroics. At the nanoscale though, ferroelectrics may exhibit non-trivial or exotic polarization configurations under proper electrostatic and elastic conditions. These polar states may possess emerging properties not present in the bulk compounds and are promising for technological applications. Here, the observation of rotational polarization topologies at the nanoscale by means of aberration-corrected scanning transmission electron microscopy is reported in BaTiO3/SrTiO3 superlattices grown on cubic SrTiO3(001). The transition from a highly homogeneous polarization state to the formation of rotational nanodomains has been achieved by controlling the superlattice period while maintaining compressive clamping of the superlattice to the cubic SrTiO3 substrate. The nanodomains revealed in BaTiO3 prove that its nominal tetragonal structure also allows rotational polar textures.

12.
Sci Rep ; 9(1): 5828, 2019 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-30967568

RESUMEN

Solution deposited YBa2Cu3O7-x (YBCO) nanocomposites with preformed nanoparticles represent a promising cost-effective approach for superior critical current properties under applied magnetic fields. Nonetheless, the majority of YBCO nanocomposites with high nanoparticle loads (>20%) suffer from nanoparticle coalescence and degraded superconducting properties. Here, we study the influence of nanoparticle concentration (0-25% mol), size (5 nm-10 nm) and composition (BaHfO3, BaZrO3) on the generation of structural defects in the epitaxial YBCO matrix, key parameter for vortex pinning. We demonstrate that flash-heated superconducting nanocomposites with 20 mol% preformed BaHfO3 or BaZrO3 perovskite secondary phases feature discrete and small (7 nm) nanoparticles and high density of YBa2Cu4O8 (Y248) intergrowths. We identify a synergy between Y248 intergrowth density and small nanoparticles to increase artificial vortex pinning centers. Also, we validate the multideposition process to successfully increase film thickness of epitaxial nanocomposites with competitive critical currents Ic at 77 K.

13.
Chem Mater ; 31(3): 947-954, 2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30828131

RESUMEN

Ferroelectric perovskite oxides are emerging as a promising photoactive layer for photovoltaic applications because of their very high stability and their alternative ferroelectricity-related mechanism for solar energy conversion that could lead to extraordinarily high efficiencies. One of the biggest challenges so far is to reduce their band gap toward the visible region while simultaneously retaining ferroelectricity. To address these two issues, herein an elemental composition engineering of BiFeO3 is performed by substituting Fe by Co cations, as a means to tune the characteristics of the transition metal-oxygen bond. We demonstrate by solution processing the formation of epitaxial, pure phase, and stable BiFe1-x Co x O3 thin films for x ≤ 0.3 and film thickness up to 100 nm. Importantly, the band gap can be tuned from 2.7 to 2.3 eV upon cobalt substitution while simultaneously enhancing ferroelectricity. As a proof of concept, nonoptimized vertical devices have been fabricated and, reassuringly, the electrical photoresponse in the visible region of the Co-substituted phase is improved with respect to the unsubstituted oxide.

14.
Nanoscale Adv ; 1(9): 3741-3752, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36133542

RESUMEN

Epitaxial films of piezoelectric α-quartz could enable the fabrication of sensors with unprecedented sensitivity for prospective applications in electronics, biology and medicine. However, the prerequisites are harnessing the crystallization of epitaxial α-quartz and tailoring suitable film microstructures for nanostructuration. Here, we bring new insights into the crystallization of epitaxial α-quartz films on silicon (100) from the devitrification of porous silica and the control of the film microstructures: we show that by increasing the quantity of devitrifying agent (Sr) it is possible to switch from an α-quartz microstructure consisting of a porous flat film to one dominated by larger, fully dense α-quartz crystals. We also found that the film thickness, relative humidity and the nature of the surfactant play an important role in the control of the microstructure and homogeneity of the films. Via a multi-layer deposition method, we have extended the maximum thickness of the α-quartz films from a few hundreds of nm to the µm range. Moreover, we found a convenient method to combine this multilayer approach with soft lithography to pattern silica films while preserving epitaxial crystallization. This improved control over crystallization and the possibility of preparing patterned films of epitaxial α-quartz on Si substrates pave the path to future developments in applications based on electromechanics, optics and optomechanics.

15.
Nanoscale ; 10(43): 20155-20161, 2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30259954

RESUMEN

We use an original water-based chemical method to grow pure epitaxial BiFeO3 (BFO) ultra-thin films with excellent piezoelectric properties. Particularly, we show that this novel chemical route produces higher natural ferroelectric domain size distribution and coercive field compared to similar BFO films grown by physical methods. Moreover, we measured the d33 piezoelectric coefficient of 60 nm thick BFO films by a direct approach, using Direct Piezoelectric Force Microscopy (DPFM). As a result, first piezo-generated charge maps of a very thin BFO layer were obtained applying this novel technology. We also performed a comparative study of the d33 coefficients between standard PFM analysis and DPFM microscopy showing similar values i.e. 17 pm V-1 and 22 pC N-1, respectively. Finally, we proved that the directionality of the piezoelectric effect in BFO ferroelectric thin films is preserved at low thickness dimensions demonstrating the potential of chemical processes for the development of low cost functional ferroelectric and piezoelectric devices.

16.
ACS Appl Mater Interfaces ; 10(30): 25529-25535, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29985584

RESUMEN

Conventional strain engineering of epitaxial ferroelectric oxide thin films is based on the selection of substrates with a suitable lattice parameter. Here, we show that the variation of oxygen pressure during pulsed laser deposition is a flexible strain engineering method for epitaxial ferroelectric BaTiO3 films either on perovskite substrates or on Si(001) wafers. This unconventional growth strategy permits continuous tuning of strain up to high levels (ε > 0.8%) in films greater than one hundred nanometers thick, as well as selecting the polar axis orientation to be either parallel or perpendicular to the substrate surface plane.

17.
ACS Appl Mater Interfaces ; 10(14): 12031-12041, 2018 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-29546753

RESUMEN

Pure spin currents have potential for use in energy-friendly spintronics. They can be generated by a flow of charge along a nonmagnetic metal with large spin-orbit coupling. This produces a spin accumulation at the surfaces, controllable by the magnetization of an adjacent ferromagnetic layer. Paramagnetic metals typically used are close to ferromagnetic instability and thus magnetic proximity effects can contribute to the observed angular-dependent magnetoresistance (ADMR). As interface phenomena govern the spin conductance across the metal/ferromagnetic-insulator heterostructures, unraveling these distinct contributions is pivotal for a full understanding of spin current conductance. Here, we report X-ray absorption and magnetic circular dichroism (XMCD) at Pt M and (Co, Fe) L absorption edges and atomically resolved energy electron loss spectroscopy (EELS) data of Pt/CoFe2O4 bilayers, where CoFe2O4 layers have been capped by Pt grown at different temperatures. It was found that the ADMR differs dramatically, dominated either by spin Hall magnetoresistance (SMR) associated with the spin Hall effect or by anisotropic magnetoresistance. The XMCD and EELS data indicate that the Pt layer grown at room temperature does not display any magnetic moment, whereas when grown at a higher temperature, it becomes magnetic due to interfacial Pt-(Co, Fe) alloying. These results enable differentiation of spin accumulation from interfacial chemical reconstructions and tailoring of the angular-dependent magnetoresistance.

18.
Small ; 13(39)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28809085

RESUMEN

Materials that can couple electrical and mechanical properties constitute a key element of smart actuators, energy harvesters, or many sensing devices. Within this class, functional oxides display specific mesoscale responses which often result in great sensitivity to small external stimuli. Here, a novel combination of molecular beam epitaxy and a water-based chemical-solution method is used for the design of mechanically controlled multilevel device integrated on silicon. In particular, the possibility of adding extra functionalities to a ferroelectric oxide heterostructure by n-doping and nanostructuring a BaTiO3 thin film on Si(001) is explored. It is found that the ferroelectric polarization can be reversed, and resistive switching can be measured, upon a mechanical load in epitaxial BaTiO3-δ /La0.7 Sr0.3 MnO3 /SrTiO3 /Si columnar nanostructures. A flexoelectric effect is found, stemming from substantial strain gradients that can be created with moderate loads. Simultaneously, mechanical effects on the local conductivity can be used to modulate a nonvolatile resistive state of the BaTiO3-δ heterostructure. As a result, three different configurations of the system become accessible on top of the usual voltage reversal of polarization and resistive states.

19.
Sci Technol Adv Mater ; 18(1): 430-435, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28740558

RESUMEN

High-quality thermoelectric La0.2Sr0.8TiO3 (LSTO) films, with thicknesses ranging from 20 nm to 0.7 µm, have been epitaxially grown on SrTiO3(001) substrates by enhanced solid-source oxide molecular-beam epitaxy. All films are atomically flat (with rms roughness < 0.2 nm), with low mosaicity (<0.1°), and present very low electrical resistivity (<5 × 10-4 Ω cm at room temperature), one order of magnitude lower than standard commercial Nb-doped SrTiO3 single-crystalline substrate. The conservation of transport properties within this thickness range has been confirmed by thermoelectric measurements where Seebeck coefficients of approximately -60 µV/K have been recorded for all films. These LSTO films can be integrated on Si for non-volatile memory structures or opto-microelectronic devices, functioning as transparent conductors or thermoelectric elements.

20.
Adv Sci (Weinh) ; 3(6): 1500295, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27812469

RESUMEN

Defects in ceramic materials are generally seen as detrimental to their functionality and applicability. Yet, in some complex oxides, defects present an opportunity to enhance some of their properties or even lead to the discovery of exciting physics, particularly in the presence of strong correlations. A paradigmatic case is the high-temperature superconductor YBa2Cu3O7-δ (Y123), in which nanoscale defects play an important role as they can immobilize quantized magnetic flux vortices. Here previously unforeseen point defects buried in Y123 thin films that lead to the formation of ferromagnetic clusters embedded within the superconductor are unveiled. Aberration-corrected scanning transmission microscopy has been used for exploring, on a single unit-cell level, the structure and chemistry resulting from these complex point defects, along with density functional theory calculations, for providing new insights about their nature including an unexpected defect-driven ferromagnetism, and X-ray magnetic circular dichroism for bearing evidence of Cu magnetic moments that align ferromagnetically even below the superconducting critical temperature to form a dilute system of magnetic clusters associated with the point defects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...