Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1388366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799470

RESUMEN

Cryptosporidiosis in humans is caused by infection of the zoonotic apicomplexan parasite Cryptosporidium parvum. In 2006, it was included by the World Health Organization (WHO) in the group of the most neglected poverty-related diseases. It is characterized by enteritis accompanied by profuse catarrhalic diarrhea with high morbidity and mortality, especially in children of developing countries under the age of 5 years and in HIV patients. The vulnerability of HIV patients indicates that a robust adaptive immune response is required to successfully fight this parasite. Little is known, however, about the adaptive immune response against C. parvum. To have an insight into the early events of the adaptive immune response, we generated primary human dendritic cells (DCs) from monocytes of healthy blood donors and exposed them to C. parvum oocysts and sporozoites in vitro. DCs are equipped with numerous receptors that detect microbial molecules and alarm signals. If stimulation is strong enough, an essential maturation process turns DCs into unique activators of naïve T cells, a prerequisite of any adaptive immune response. Parasite exposure highly induced the production of the pro-inflammatory cytokines/chemokines interleukin (IL)-6 and IL-8 in DCs. Moreover, antigen-presenting molecules (HLA-DR and CD1a), maturation markers, and costimulatory molecules required for T-cell stimulation (CD83, CD40, and CD86) and adhesion molecules (CD11b and CD58) were all upregulated. In addition, parasite-exposed human DCs showed enhanced cell adherence, increased mobility, and a boosted but time-limited phagocytosis of C. parvum oocysts and sporozoites, representing other prerequisites for antigen presentation. Unlike several other microbial stimuli, C. parvum exposure rather led to increased oxidative consumption rates (OCRs) than extracellular acidification rates (ECARs) in DCs, indicating that different metabolic pathways were used to provide energy for DC activation. Taken together, C. parvum-exposed human DCs showed all hallmarks of successful maturation, enabling them to mount an effective adaptive immune response.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Células Dendríticas , Humanos , Células Dendríticas/inmunología , Cryptosporidium parvum/inmunología , Criptosporidiosis/inmunología , Animales , Citocinas/metabolismo , Citocinas/inmunología , Células Cultivadas , Diferenciación Celular/inmunología , Activación de Linfocitos/inmunología , Inmunidad Adaptativa , Zoonosis/inmunología , Zoonosis/parasitología
2.
Dent Mater ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38744567

RESUMEN

OBJECTIVES: This in vitro pilot study aimed to evaluate whether different pre-treatments (demineralization, deproteinization, (chemo-)mechanical reduction of the surface layer) influence the penetration depth of a resin infiltrant into MIH-affected enamel compared to initial carious lesions. METHODS: Thirty extracted human permanent molars with non-cavitated initial carious lesions (n = 5) or MIH (n = 25) were chosen and randomly assigned to six experimental groups: IC: initial caries; M: MIH; MN: MIH, 5.25% sodium hypochlorite; MM: MIH, microabrasion; MA: MIH, air abrasion; MAN: MIH, air abrasion and 5.25% sodium hypochlorite. A modified indirect dual fluorescence staining method was adopted to assess the penetration depth (PD) of the resin infiltrant and the lesion depth (LD) by confocal laser scanning microscopy (CLSM). Exemplarily, scanning electron microscopic (SEM) images were captured. The relationship between group assignment and penetration/lesion depth was estimated using a linear mixed model incorporating the tooth as random effect (two observations/tooth). The significance level was set at p < 0.05. RESULTS: For MIH-affected molars, the mean PD (in µm; median, [minimum-maximum]) were M (178.2 [32.5-748.9]), MN (275.6 [105.3-1131.0]), MM (48.7 [0.0-334.4]), MA (287.7 [239.4-491.7]), and MAN (245.4 [76.1-313.5]). Despite the observed differences in PD between the groups, these could not be statistically verified (Bonferroni, p = 0.322). The percentage penetration was significantly higher for IC than for MIH groups (Bonferroni, p < 0.05). SIGNIFICANCE: Compared to IC, resin infiltration into MIH-affected enamel ist more variable. Different pre-treatments influence the resin penetration into developmentally hypomineralized enamel to a fluctuating level.

3.
Animals (Basel) ; 14(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38254430

RESUMEN

Metabolism, mainly driven by oxygen consumption, plays a key role in life, as it is one of the main ways to respond to extreme temperatures through internal processes. Theba pisana, a widespread Mediterranean land snail, is exposed to a wide range of ambient temperature. In this species the oxygen consumption was tested as a response variable by multiple regression modelling on the "explanatory" variables shell-free mass, temperature, and relative humidity. Our results show that the oxygen consumption of T. pisana can be well described (73.1%) by these three parameters. In the temperature range from 23 °C to 35 °C the oxygen consumption decreased with increasing temperature. Relative humidity, in the range of 67% to 100%, had the opposite effect: if it increases, oxygen consumption will increase as well. Metabolism is proportional to an individual's mass to the power of the allometric scaling exponent α, which is between 0.62 and 0.77 in the mentioned temperature range. CT scans of shells and gravimetry revealed the shell-free mass to be calculated by multiplying the shell diameter to the third power by 0.2105. Data were compared to metabolic scaling exponents for other snails reported in the literature.

4.
Front Vet Sci ; 10: 1256726, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662980

RESUMEN

Introduction: Infections with the apicomplexan obligate intracellular parasite Cryptosporidium parvum lead to cryptosporidiosis-a worldwide zoonotic infection. C. parvum is one of the most common diarrheal pathogens in young calves, which are the main reservoir of the pathogen. Cryptosporidiosis leads to severe economic losses in the calf industry and being a major contributor to diarrhea morbidity and mortality in children. Polymorphonuclear neutrophils (PMN) are part of the innate immune system. Their effector mechanisms directed against invasive parasites include phagocytosis, production of antimicrobial molecules as well as the formation of so-called neutrophil extracellular traps (NETs). Like other leukocytes of the innate immune system, PMN are thus able to release chromatin fibers enriched with antimicrobial granular molecules extracellularly thereby immobilizing and partially killing invasive bacteria, viruses, fungi and parasites. Methods: In vitro interactions of neonatal bovine PMN and C. parvum-oocysts and sporozoites were illustrated microscopically via scanning electron microscopy- and live cell imaging 3D holotomographic microscopy analyses. C. parvum-triggered NETosis was quantified via extracellular DNA measurements as well as verified via detection of NET-typical molecules [histones, neutrophil elastase (NE)] through immunofluorescence microscopy analysis. To verify the role of ATP in neonatal-derived NETosis, inhibition experiments were performed with NF449 (purinergic receptor antagonist with high specificity to P2X1 receptor). Results and discussion: Using immunofluorescence- and SEM-based analyses, we demonstrate here for the first time that neonate bovine PMN are capable of forming NETs against C. parvum-sporozoites and oocysts, thus as a stage-independent cell death process. Our data further showed that C. parvum strongly induces suicidal neonatal NETosis in a P2X1-dependent manner, suggesting anti-cryptosporidial effects not only through firm sporozoite ensnarement and hampered sporozoite excystation, but also via direct exposure to NETs-associated toxic components.

5.
Materials (Basel) ; 16(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687643

RESUMEN

(1) Background: The aim of this in vitro study was to evaluate the micro-tensile bond strength (µ-TBS) of universal adhesives to primary tooth dentin after different storage periods. (2) Methods: Dentin of 100 extracted primary molars was exposed. Dentin surfaces were bonded with six universal adhesives (Adhese®Universal [AU], All-Bond Universal® [ABU], G-Premio Bond [GPB], iBond®Universal [IBU], Prime&Bond active™ [PBa], and Prime&Bond®NT as control [PBN]) and restored with a resin composite build-up (Filtek™ Z250). After 24 h, 6 months, and 12 months of water storage, specimens were cut into sticks, and µ-TBS was measured and analyzed using one-way ANOVA (p < 0.05) for normal distributions and the Mann-Whitney U-test (p < 0.05) for non-normal distribution. Pretesting failures were recorded as 0 MPa. Fracture modes were analyzed under a fluorescence microscope; interfaces were visualized with SEM/TEM. (3) Results: Compared with the reference group (PBN: 32.5/31.2 MPa after 6/12 months), two adhesives showed a significantly higher bond strength after 6 months (AU: 44.1 MPa, ABU: 40.9 MPa; p < 0.05) and one adhesive after 12 months (AU: 42.9 MPa, p < 0.05). GPB revealed significantly lower bond strengths in all storage groups (16.9/15.5/10.9 MPa after 24 h/6 months/12 months; p < 0.05). AU and IBU did not suffer pre-test-failures [PTF]. (4) Conclusions: After 12 months, PBN, IBU, AU, and GPB showed significantly lower results compared ithw initial µ-TBS, whereas AU revealed the highest µ-TBS and no PTF.

6.
Artículo en Inglés | MEDLINE | ID: mdl-37562431

RESUMEN

OBJECTIVES: Clinical studies indicate encouraging cardioprotective potential for Cardioplexol. Its cardioprotective capacities during 45 minutes of ischemia compared with pure no-flow ischemia or during 90 minutes of ischemia compared with Calafiore cardioplegia were investigated experimentally. METHODS: Forty-four rat hearts were isolated and inserted into a blood-perfused pressure-controlled Langendorff apparatus. In a first step, cardiac arrest was induced by Cardioplexol or pure no-flow ischemia lasting 45 minutes. In a second step, cardiac arrest was induced by Cardioplexol or Calafiore cardioplegia lasting 90 minutes. For both experimental steps, cardiac function, metabolic parameters, and troponin I levels were evaluated during 90 minutes of reperfusion. At the end of reperfusion, hearts were fixed, and ultrastructural integrity was examined by electron microscopy. RESULTS: Step 1: after 90 minutes of reperfusion, hearts exposed to Cardioplexol had significantly higher left ventricular developed pressure (CP-45': 74%BL vs. no-flow-45': 45%BL; p = 0.046) and significantly better maximal left ventricular relaxation (CP-45': 84%BL vs. no-flow-45': 51%BL; p = 0.012). Oxygen consumption, lactate production, and troponin levels were similar in both groups. Step 2: left ventricular developed pressure was lower (22 vs. 48% of BL; p = 0.001) and coronary flow was lower (24 vs. 53% of BL; p = 0.002) when Cardioplexol was used compared with Calafiore cardioplegia. Troponin I levels were significantly higher under Cardioplexol (358.9 vs. 106.1 ng/mL; p = 0.016). CONCLUSION: Cardioplexol significantly improves functional recovery after 45 minutes of ischemia compared with pure ischemia. However, Cardioplexol protects the myocardium from ischemia/reperfusion-related damage after 90 minutes of ischemia worse than Calafiore cardioplegia.

7.
Front Vet Sci ; 10: 1176144, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404777

RESUMEN

Colostrum is one of the most important factors influencing the health and development of mammalian neonates. It is well-established that leukocytes, including polymorphonuclear neutrophils (PMN), migrate from the mother to the infant via colostrum uptake. In this study, for the first time, we studied the ability of ovine colostral-derived PMN to extrude neutrophil extracellular traps (NETs) against the abortive apicomplexan parasite Neospora caninum. Although this cell population plays a significant role in the transmission of maternal innate immunity to neonates, little is known about colostral PMN activities in sheep. However, this cell population is a significant source of the transfer of maternal immunity to the neonate. Colostral PMN continues to exert immunological effects even after transitioning into the colostrum. The present study aimed to investigate the extrusion of NETs by ovine colostral PMN exposed to the apicomplexan parasite, N. caninum, which is known to cause devastating reproductive disorders in cattle, small ruminants, wildlife animals, and dogs. The present study is the first to demonstrate that ovine colostral PMN can produce NETs after stimulation with vital N. caninum tachyzoites. Ovine colostrum-derived NETs were detected by chromatin staining and antibody-based immunofluorescence staining of NET-specific structures, including neutrophil elastase (NE) and global histones (H1, H2A/H2B, H3, H4), as well as scanning electron microscopy (SEM) analysis.

8.
Biology (Basel) ; 12(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37508391

RESUMEN

The apicomplexan protozoan parasite Cryptosporidium parvum is responsible for cryptosporidiosis, which is a zoonotic intestinal illness that affects newborn cattle, wild animals, and people all over the world. Mammalian monocytes are bone marrow-derived myeloid leukocytes with important defense effector functions in early host innate immunity due to their ATP purinergic-, CD14- and CD16-receptors, adhesion, migration and phagocytosis capacities, inflammatory, and anti-parasitic properties. The formation of monocyte extracellular traps (METs) has recently been reported as an additional effector mechanism against apicomplexan parasites. Nonetheless, nothing is known in the literature on METs extrusion neither towards C. parvum-oocysts nor sporozoites. Herein, ATP purinergic receptor P2X1, glycolysis, Notch signaling, and lactate monocarboxylate transporters (MCT) were investigated in C. parvum-exposed bovine monocytes under intestinal physioxia (5% O2) and hyperoxia (21% O2; most commonly used hyperoxic laboratory conditions). C. parvum-triggered suicidal METs were confirmed by complete rupture of exposed monocytes, co-localization of extracellular DNA with myeloperoxidase (MPO) and histones (H1-H4) via immunofluorescence- and confocal microscopy analyses. C. parvum-induced suicidal METs resulted not only in oocyst entrapment but also in hindered sporozoite mobility from oocysts according to scanning electron microscopy (SEM) analyses. Early parasite-induced bovine monocyte activation, accompanied by membrane protrusions toward C. parvum-oocysts/sporozoites, was unveiled using live cell 3D-holotomographic microscopy analysis. The administration of NF449, an inhibitor of the ATP purinergic receptor P2X1, to monocytes subjected to varying oxygen concentrations did not yield a noteworthy decrease in C. parvum-induced METosis. This suggests that the cell death process is not dependent on P2X1. Additionally, blockage of glycolysis in monocyte through 2-deoxy glucose (2-DG) inhibition reduced C. parvum-induced METosis but not significantly. According to monocyte energetic state measurements, C. parvum-exposed cells neither increased extracellular acidification rates (ECAR) nor oxygen consumption rates (OCR). Lactate monocarboxylate transporters (MCT) inhibitor (i.e., AR-C 141990) treatments significantly diminished C. parvum-mediated METs extrusion under physioxic (5% O2) condition. Similarly, treatment with either DAPT or compound E, two selective Notch inhibitors, exhibited no significant suppressive effects on bovine MET production. Overall, for the first time, we demonstrate C. parvum-mediated METosis as P2X1-independent but as an MCT-dependent defense mechanism under intestinal physioxia (5% CO2) conditions. METs findings suggest anti-cryptosporidial effects through parasite entrapment and inhibition of sporozoite excystation.

9.
G3 (Bethesda) ; 13(9)2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37462293

RESUMEN

We investigated 4 European domestic shorthair kittens with skin lesions consistent with the dermatosparaxis type of the Ehlers-Danlos syndrome, a connective tissue disorder. The kittens were sired by the same tomcat but were born by 3 different mothers. The kittens had easily torn skin resulting in nonhealing skin wounds. Both clinically and histologically, the skin showed thin epidermis in addition to inflammatory changes. Changes in collagen fibers were visible in electron micrographs. The complete genome of an affected kitten was sequenced. A one base pair duplication leading to a frameshift in the candidate gene ADAMTS2 was identified, p.(Ser235fs*3). All 4 affected cats carried the frameshift duplication in a homozygous state. Genotypes at this variant showed perfect cosegregation with the autosomal recessive Ehlers-Danlos syndrome phenotype in the available family. The mutant allele did not occur in 48 unrelated control cats. ADAMTS2 loss-of-function variants cause autosomal recessive forms of Ehlers-Danlos syndrome in humans, mice, dogs, cattle, and sheep. The available evidence from our investigation together with the functional knowledge on ADAMTS2 in other species allows to classify the identified ADAMTS2 variant as pathogenic and most likely causative variant for the observed Ehlers-Danlos syndrome.


Asunto(s)
Enfermedades de los Gatos , Síndrome de Ehlers-Danlos , Mutación del Sistema de Lectura , Animales , Gatos , Femenino , Proteínas ADAMTS/genética , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patología , Síndrome de Ehlers-Danlos/veterinaria , Genotipo , Fenotipo , Piel/patología , Enfermedades de los Gatos/genética , Enfermedades de los Gatos/patología
10.
Pathogens ; 12(5)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37242333

RESUMEN

Hystrichis tricolor is a neglected avian enoplid nematode (superfamiliy Dioctophymatoidea) and known to parasitize various species of the Anatidae (Anas spp. and Mergus spp.) from the northern hemisphere, inducing mainly proventriculitis in domestic and wild waterfowl. Here, we focus on the pathological findings of naturally H. tricholor-infected Egyptian geese (Alopochen aegyptiaca) and a neozoan shelduck (Tandorninae) of Germany. Nowadays, this species is considered the fastest-spreading alien waterfowl species within Western Europe. Additionally, molecular sequencing coupled with phylogenetic characterization of H. tricolor is reported. Post mortem analyses unveiled patent gastric H. tricolor infections in eight of twelve infected birds (8/12; 66.7%), inducing proventriculitis resulting in large visible nodular lesions. Histopathological findings point to chronic host pro-inflammatory immune reactions. These results demonstrate the potential role of Egyptian geese as natural reservoir hosts of H. tricholor and highlight their possible role in parasite transmission (i.e., spillback) into endemic waterfowl species. Due to avian health concerns, the occurrence of hystrichiosis should be monitored in native waterfowl in the future, introducing appropriate management practices in conservation strategies of endemic wild birds not only in Germany but elsewhere in Europe.

11.
Front Immunol ; 14: 1125667, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875070

RESUMEN

Neutrophil extracellular traps (NET) formation is one important host innate defense mechanism elicited by polymorphonuclear neutrophils (PMN). NETs are composed by chromatin and proteins with microbicidal and signaling activity. So far, there is one report on Toxoplasma gondii-triggered NETs in cattle, however, exact mechanisms, including signalling pathways and dynamics governing this reaction remain largely unknown. Recently, involvement of cell cycle proteins was demonstrated for phorbol myristate acetate (PMA)-triggered human PMN-derived NETs. Here, we studied the involvement of cell cycle proteins in T. gondii-induced NETs in exposed bovine PMN. Through confocal and transmission electron microscopy we discovered that Ki-67 and lamin B1 signals are upregulated and relocated during T. gondii-induced NETosis. Nuclear membrane disruption was also observed as a hallmark of NET formation in bovine PMN confronted with viable T. gondii tachyzoites, mimicking some steps of mitosis. However, we did not observe centrosome duplication as previously described for human PMN-derived NET formation stimulated with PMA.


Asunto(s)
Trampas Extracelulares , Toxoplasma , Humanos , Bovinos , Animales , Proteínas de Ciclo Celular , Neutrófilos , Ciclo Celular , Proteínas Tirosina Quinasas Receptoras , Acetato de Tetradecanoilforbol
12.
Nat Genet ; 55(1): 100-111, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36539616

RESUMEN

Generation of functional transcripts requires transcriptional initiation at regular start sites, avoiding production of aberrant and potentially hazardous aberrant RNAs. The mechanisms maintaining transcriptional fidelity and the impact of spurious transcripts on cellular physiology and organ function have not been fully elucidated. Here we show that TET3, which successively oxidizes 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) and other derivatives, prevents aberrant intragenic entry of RNA polymerase II pSer5 into highly expressed genes of airway smooth muscle cells, assuring faithful transcriptional initiation at canonical start sites. Loss of TET3-dependent 5hmC production in SMCs results in accumulation of spurious transcripts, which stimulate the endosomal nucleic-acid-sensing TLR7/8 signaling pathway, thereby provoking massive inflammation and airway remodeling resembling human bronchial asthma. Furthermore, we found that 5hmC levels are substantially lower in human asthma airways compared with control samples. Suppression of spurious transcription might be important to prevent chronic inflammation in asthma.


Asunto(s)
5-Metilcitosina , Asma , Humanos , 5-Metilcitosina/metabolismo , Inmunidad Innata/genética , Inflamación/genética , Asma/genética , Metilación de ADN
13.
Int J Parasitol Parasites Wildl ; 19: 248-256, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36388725

RESUMEN

Obligatory endoparasitic mites of the genera Halarachne Allman, 1847 and Orthohalarachne Newell, 1947 (Acari: Halarachnidae) parasitize different segments of the respiratory tract of marine mammals, including pinnipeds and sea otters, and infestations can cause asymptomatic to serious respiratory diseases. However, knowledge on biology, pathogenic potential and occurrence of halarachnid mites infesting pinnipeds, especially in captivity, is scarce. A two-year-old South American sea lion (Otaria flavescens Shaw, 1800) male, born and held at the Vienna Zoo, was anesthesized for routine pre-transport examinations, including computed tomography, bronchoalveolar lavage, and blood sampling. During the final phase of general anesthesia, the individual abruptly became apneic and died despite all attempts at resuscitation. At necropsy, 45 highly motile whitish millimeter-sized structures were macroscopically detected in the trachea, bifurcatio tracheae and main bronchi and were identified as adult stages of Orthohalarachne diminuata Doetschman, 1944 following morphological descriptions. After trepanation of the nasal cavity and sinus paranasalis, a total of 407 larval and 3 nymphal specimens distributed in clusters were detected. Macroscopically, sinus mucosa showed hyperemia and multiple petechial hemorrhages. Histopathological analyses of paranasal sinuses revealed mite cross-sections surrounded by sanioserous exudate and epithelial exfoliation. For the first time, O. diminuata was molecularly characterized and phylogenetically analyzed based on its 16S rDNA. Our study constitutes the first record of a severe O. diminuata infestation in captive O. flavescens and one of the few host-parasite records in general. We present clinical data and pathological results, the first scanning electron microscopic images of a O. diminuata larval stage and discuss the etiology of this autochthonous infestation, possible transmission pathways and detrimental effects. Further studies on biology and pathogenic effects of halarachnid mites, as well as on the development of non-invasive sampling techniques are essentially required for a better understanding of (ortho-)halarachnosis in pinnipeds held in zoological gardens.

15.
Front Cell Dev Biol ; 10: 946335, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36111335

RESUMEN

Neospora caninum represents a major cause of abortive disease in bovines and small ruminants worldwide. As a typical obligate intracellular apicomplexan parasite, N. caninum needs to modulate its host cell for successful replication. In the current study, we focused on parasite-driven interference with host cell cycle progression. By performing DNA content-based cell cycle phase analyses in N. caninum-infected primary bovine umbilical vein endothelial cells (BUVEC), a parasite-driven S-phase arrest was detected at both 24 and 32 h p. i., being paralleled by fewer host cells experiencing the G0/G1 cell cycle phase. When analyzing S-subphases, proliferation cell nuclear antigen (per PCNA)-based experiments showed a reduced population of BUVEC in the late S-phase. Analyses on key molecules of cell cycle regulation documented a significant alteration of cyclin A2 and cyclin B1 abundance in N. caninum-infected host endothelial cells, thereby confirming irregularities in the S-phase and S-to-G2/M-phase transition. In line with cell cycle alterations, general nuclear parameters revealed smaller nuclear sizes and morphological abnormalities of BUVEC nuclei within the N. caninum-infected host cell layer. The latter observations were also confirmed by transmission electron microscopy (TEM) and by analyses of lamin B1 as a marker of nuclear lamina, which illustrated an inhomogeneous nuclear lamin B1 distribution, nuclear foldings, and invaginations, thereby reflecting nuclear misshaping. Interestingly, the latter finding applied to both non-infected and infected host cells within parasitized BUVEC layer. Additionally, actin detection indicated alterations in the perinuclear actin cap formation since typical nucleo-transversal filaments were consistently lacking in N. caninum-infected BUVEC, as also documented by significantly decreased actin-related intensities in the perinuclear region. These data indicate that N. caninum indeed alters host cell cycle progression and severely affects the host cell nuclear phenotype in primary bovine endothelial host cells. In summary, these findings add novel data on the complex N. caninum-specific modulation of host cell and nucleus, thereby demonstrating clear differences in cell cycle progression modulation driven by other closely related apicomplexans like Toxoplasma gondii and Besnotia besnoiti.

16.
J Reprod Immunol ; 154: 103749, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36152379

RESUMEN

Neospora caninum represents an obligate intracellular apicomplexan parasite of the family Sarcocystidae causing severe reproductive disorders in cattle, small ruminants, wild animals and canids worldwide. Neutrophil extracellular traps (NETs) were recently described as effective host defense mechanism of polymorphonuclear neutrophils (PMN) derived from cattle, dogs, goats and dolphins against N. caninum tachyzoites. Nonetheless, nothing is known so far on canine colostral PMN immune reactions against N. caninum although breeding bitches represent a susceptible dog cohort and infected bitches may spread tachyzoites through transplacental transmission to their offspring. Thus, isolated colostrum PMN from bitches were assessed for PMN phagocytic activities as well as NETs release against viable N. caninum tachyzoites. In vitro interactions of canine colostrum-derived PMN with tachyzoites were analyzed at different ratios and time spans. Extracellular chromatin staining was applied in order to unveil classical molecules of NETs, such as neutrophil elastase (NE), global histones (H1, H2A/H2B, H3, H4) and myeloperoxidase (MPO), via antibody-based immunofluorescence microscopy analysis. N. caninum tachyzoites induced canine NETs in colostral PMN and scanning electron microscopy (SEM) analysis revealed NETs formation by colostral PMN thereby ensnaring tachyzoites after exposure. In summary, NETs released from canine colostral PMN might represent an early and effective maternal defense mechanism of the definitive host helping neonates to reduce initial intracellular replication of not only parasites but of other invasive pathogens after colostrum consumption.


Asunto(s)
Coccidiosis , Neospora , Femenino , Embarazo , Perros , Animales , Bovinos , Neutrófilos , Coccidiosis/veterinaria , Coccidiosis/parasitología , Calostro , Inmunidad Innata , Cabras
17.
Sci Rep ; 12(1): 14078, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982240

RESUMEN

The seal heartworm Acanthocheilonema spirocauda (Nematoda: Onchocercidae) parasitizes the heart and pulmonary arteries of various phocid seals of the Northern Hemisphere. Over many decades, potential vectors of this parasite have been discussed, and to this date, the life cycle is not fully known. The seal louse Echinophthirius horridus (Anoplura: Echinophthiriidae) is an obligatory, permanent and haematophagous ectoparasite of phocids that has been hypothesized to function as obligate intermediate host for A. spirocauda. We examined 11 adult E. horridus specimens collected from stranded harbour seals (Phoca vitulina) in rehabilitation at the Sealcentre Pieterburen by X-ray microCT imaging, aiming to illustrate larval A. spirocauda infection sites in situ. In three of these specimens, thread-like larvae were detected in insect organs. Detailed imaging of the most infected louse revealed a total of 54 A. spirocauda larvae located either in fat bodies or the haemocoel. Histological analysis of the same specimen illustrated nematode cross-sections, confirming X-ray microCT data. The current data strongly suggest that E. horridus is a natural intermediate host for A. spirocauda. Moreover, we demonstrate the potential of X-ray microCT-based imaging as a non-destructive method to analyze host-parasite interactions, especially in the neglected field of marine mammal parasitology.


Asunto(s)
Acanthocheilonema , Anoplura , Dirofilaria immitis , Nematodos , Phoca , Animales , Larva , Microtomografía por Rayos X
18.
Nat Commun ; 13(1): 4184, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35859073

RESUMEN

The NAD+-dependent SIRT1-7 family of protein deacetylases plays a vital role in various molecular pathways related to stress response, DNA repair, aging and metabolism. Increased activity of individual sirtuins often exerts beneficial effects in pathophysiological conditions whereas reduced activity is usually associated with disease conditions. Here, we demonstrate that SIRT6 deacetylates H3K56ac in myofibers to suppress expression of utrophin, a dystrophin-related protein stabilizing the sarcolemma in absence of dystrophin. Inactivation of Sirt6 in dystrophin-deficient mdx mice reduced damage of myofibers, ameliorated dystrophic muscle pathology, and improved muscle function, leading to attenuated activation of muscle stem cells (MuSCs). ChIP-seq and locus-specific recruitment of SIRT6 using a CRISPR-dCas9/gRNA approach revealed that SIRT6 is critical for removal of H3K56ac at the Downstream utrophin Enhancer (DUE), which is indispensable for utrophin expression. We conclude that epigenetic manipulation of utrophin expression is a promising approach for the treatment of Duchenne Muscular Dystrophy (DMD).


Asunto(s)
Distrofia Muscular de Duchenne , Sirtuinas , Animales , Distrofina/metabolismo , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/metabolismo , Sirtuinas/genética , Utrofina/genética , Utrofina/metabolismo
19.
Animals (Basel) ; 12(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35625154

RESUMEN

Neutrophil extracellular traps (NETs) play a key role in fertilisation by eliminating microorganisms and entrapping spermatozoa in the female reproductive tract (FRT). The deleterious effects of NETs on spermatozoa have been previously described; however, individual exposure to NET-derived components in bull spermatozoa has not been explored. The aim of this study was to evaluate the effects of the main NET-derived proteins, histone 2A (H2A), neutrophil elastase (ELA), myeloperoxidase (MPO), pentraxin 3 (PTX), cathepsin G (Cat-G), and cathelicidin LL37 (LL-37), at concentrations of 1, 10, and 30 µg/mL, on sperm parameters. Sperm were selected and incubated with different NET-derived proteins for 4 h. Membrane and acrosome integrity, lipoperoxidation, and membrane phospholipid disorders were also evaluated. Bovine polymorphonuclear neutrophil (PMN)/sperm co-cultures were evaluated by scanning electron microscopy and immunofluorescence. All NET-derived proteins/enzymes resulted in a reduction in membrane integrity, acrosome integrity, and lipoperoxidation at a concentration of 30 µg/mL. Bovine PMN/sperm co-cultures showed marked NET formation in the second hour. In conclusion, all NET-derived proteins/enzymes exerted cytotoxic effects on bull sperm, and this effect should be considered in future investigations on the uterine microenvironment and the advancement of spermatozoa in the FRT.

20.
Biology (Basel) ; 11(3)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35336816

RESUMEN

Cryptosporidiosis is a zoonotic intestinal disease that affects humans, wildlife, and neonatal cattle, caused by Cryptosporidium parvum. Neutrophil extracellular traps (NETs), also known as suicidal NETosis, are a powerful and ancient innate effector mechanism by which polymorphonuclear neutrophils (PMN) battle parasitic organisms like protozoa and helminths. Here, C. parvum oocysts and live sporozoites were utilized to examine suicidal NETosis in exposed bovine PMN under both 5% O2 (physiological conditions within small intestinal tract) and 21% O2 (normal hyperoxic conditions in research facilities). Both sporozoites and oocysts induced suicidal NETosis in exposed PMN under physioxia (5% O2) and hyperoxia (21% O2). Besides, C. parvum-induced suicidal NETosis was affirmed by total break of PMN, co-localization of extracellular DNA decorated with pan-histones (H1A, H2A/H2B, H3, H4) and neutrophil elastase (NE) by means of confocal- and immunofluorescence microscopy investigations. C. parvum-triggered NETs entrapped sporozoites and impeded sporozoite egress from oocysts covered by released NETs, according to scanning electron microscopy (SEM) examination. Live cell 3D-holotomographic microscopy analysis visualized early parasite-induced PMN morphological changes, such as the formation of membrane protrusions towards C. parvum while undergoing NETosis. Significant reduction of C. parvum-induced suicidal NETosis was measured after PMN treatments with purinergic receptor P2X1 inhibitor NF449, under both oxygen circumstances, this receptor was found to play a critical role in the induction of NETs, indicating its importance. Similarly, inhibition of PMN glycolysis via 2-deoxy glucose treatments resulted in a reduction of C. parvum-triggered suicidal NETosis but not significantly. Extracellular acidification rates (ECAR) and oxygen consumption rates (OCR) were not increased in C. parvum-exposed cells, according to measurements of PMN energetic state. Treatments with inhibitors of plasma membrane monocarboxylate transporters (MCTs) of lactate failed to significantly reduce C. parvum-mediated NET extrusion. Concerning Notch signaling, no significant reduction was detected after PMN treatments with two specific Notch inhibitors, i.e., DAPT and compound E. Overall, we here describe for the first time the pivotal role of ATP purinergic receptor P2X1 in C. parvum-mediated suicidal NETosis under physioxia (5% O2) and its anti-cryptosporidial properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...