Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(12)2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-38136938

RESUMEN

In common with other plant species, the garden pea (Pisum sativum) produces the auxin indole-3-acetic acid (IAA) from tryptophan via a single intermediate, indole-3-pyruvic acid (IPyA). IPyA is converted to IAA by PsYUC1, also known as Crispoid (Crd). Here, we extend our understanding of the developmental processes affected by the Crd gene by examining the phenotypic effects of crd gene mutations on leaves, flowers, and roots. We show that in pea, Crd/PsYUC1 is important for the initiation and identity of leaflets and tendrils, stamens, and lateral roots. We also report on aspects of auxin deactivation in pea.


Asunto(s)
Ácidos Indolacéticos , Pisum sativum , Pisum sativum/genética , Desarrollo de la Planta , Mutación
2.
Nat Plants ; 7(12): 1546-1547, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34862484
4.
New Phytol ; 216(1): 193-204, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28748561

RESUMEN

In recent years the biosynthesis of auxin has been clarified with the aid of mutations in auxin biosynthesis genes. However, we know little about the effects of these mutations on the seed-filling stage of seed development. Here we investigate a key auxin biosynthesis mutation of the garden pea, which results in auxin deficiency in developing seeds. We exploit the large seed size of this model species, which facilitates the measurement of compounds in individual seeds. The mutation results in small seeds with reduced starch content and a wrinkled phenotype at the dry stage. The phenotypic effects of the mutation were fully reversed by introduction of the wild-type gene as a transgene, and partially reversed by auxin application. The results indicate that auxin is required for normal seed size and starch accumulation in pea, an important grain legume crop.


Asunto(s)
Ácidos Indolacéticos/farmacología , Pisum sativum/metabolismo , Semillas/anatomía & histología , Almidón/biosíntesis , Ácido 2,4-Diclorofenoxiacético/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Germinación/efectos de los fármacos , Germinación/genética , Mutación/genética , Tamaño de los Órganos/efectos de los fármacos , Pisum sativum/efectos de los fármacos , Pisum sativum/embriología , Pisum sativum/ultraestructura , Fenotipo , Plantas Modificadas Genéticamente , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/ultraestructura , Sacarosa/metabolismo , Factores de Tiempo , Cigoto/efectos de los fármacos , Cigoto/metabolismo
5.
Plant Physiol ; 175(1): 351-360, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28733387

RESUMEN

Land plants lose vast quantities of water to the atmosphere during photosynthetic gas exchange. In angiosperms, a complex network of veins irrigates the leaf, and it is widely held that the density and placement of these veins determines maximum leaf hydraulic capacity and thus maximum photosynthetic rate. This theory is largely based on interspecific comparisons and has never been tested using vein mutants to examine the specific impact of leaf vein morphology on plant water relations. Here we characterize mutants at the Crispoid (Crd) locus in pea (Pisum sativum), which have altered auxin homeostasis and activity in developing leaves, as well as reduced leaf vein density and aberrant placement of free-ending veinlets. This altered vein phenotype in crd mutant plants results in a significant reduction in leaf hydraulic conductance and leaf gas exchange. We find Crispoid to be a member of the YUCCA family of auxin biosynthetic genes. Our results link auxin biosynthesis with maximum photosynthetic rate through leaf venation and substantiate the theory that an increase in the density of leaf veins coupled with their efficient placement can drive increases in leaf photosynthetic capacity.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Fotosíntesis , Pisum sativum/fisiología , Proteínas de Plantas/metabolismo , Homeostasis , Mutación , Oxigenasas/genética , Oxigenasas/metabolismo , Pisum sativum/anatomía & histología , Pisum sativum/genética , Fenotipo , Filogenia , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Estomas de Plantas/anatomía & histología , Estomas de Plantas/genética , Estomas de Plantas/fisiología , Transpiración de Plantas , Agua/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...