Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 22(11): e52476, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34558777

RESUMEN

Changing environmental cues lead to the adjustment of cellular physiology by phosphorylation signaling networks that typically center around kinases as active effectors and phosphatases as antagonistic elements. Here, we report a signaling mechanism that reverses this principle. Using the hyperosmotic stress response in Saccharomyces cerevisiae as a model system, we find that a phosphatase-driven mechanism causes induction of phosphorylation. The key activating step that triggers this phospho-proteomic response is the Endosulfine-mediated inhibition of protein phosphatase 2A-Cdc55 (PP2ACdc55 ), while we do not observe concurrent kinase activation. In fact, many of the stress-induced phosphorylation sites appear to be direct substrates of the phosphatase, rendering PP2ACdc55 the main downstream effector of a signaling response that operates in parallel and independent of the well-established kinase-centric stress signaling pathways. This response affects multiple cellular processes and is required for stress survival. Our results demonstrate how a phosphatase can assume the role of active downstream effectors during signaling and allow re-evaluating the impact of phosphatases on shaping the phosphorylome.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Fosforilación , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteómica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Cell Commun Signal ; 17(1): 66, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31208443

RESUMEN

Modern quantitative mass spectrometry (MS)-based proteomics enables researchers to unravel signaling networks by monitoring proteome-wide cellular responses to different stimuli. MS-based analysis of signaling systems usually requires an integration of multiple quantitative MS experiments, which remains challenging, given that the overlap between these datasets is not necessarily comprehensive. In a previous study we analyzed the impact of the yeast mitogen-activated protein kinase (MAPK) Hog1 on the hyperosmotic stress-affected phosphorylome. Using a combination of a series of hyperosmotic stress and kinase inhibition experiments, we identified a broad range of direct and indirect substrates of the MAPK. Here we re-evaluate this extensive MS dataset and demonstrate that a combined analysis based on two software packages, MaxQuant and Proteome Discoverer, increases the coverage of Hog1-target proteins by 30%. Using protein-protein proximity assays we show that the majority of new targets gained by this analysis are indeed Hog1-interactors. Additionally, kinetic profiles indicate differential trends of Hog1-dependent versus Hog1-independent phosphorylation sites. Our findings highlight a previously unrecognized interconnection between Hog1 signaling and the RAM signaling network, as well as sphingolipid homeostasis.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Programas Informáticos , Células HeLa , Humanos , Fosforilación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
3.
Sci Rep ; 7(1): 8998, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28827635

RESUMEN

Several yeast species catabolize hydroxyderivatives of benzoic acid. However, the nature of carriers responsible for transport of these compounds across the plasma membrane is currently unknown. In this study, we analyzed a family of genes coding for permeases belonging to the major facilitator superfamily (MFS) in the pathogenic yeast Candida parapsilosis. Our results revealed that these transporters are functionally equivalent to bacterial aromatic acid: H+ symporters (AAHS) such as GenK, MhbT and PcaK. We demonstrate that the genes HBT1 and HBT2 encoding putative transporters are highly upregulated in C. parapsilosis cells assimilating hydroxybenzoate substrates and the corresponding proteins reside in the plasma membrane. Phenotypic analyses of knockout mutants and hydroxybenzoate uptake assays provide compelling evidence that the permeases Hbt1 and Hbt2 transport the substrates that are metabolized via the gentisate (3-hydroxybenzoate, gentisate) and 3-oxoadipate pathway (4-hydroxybenzoate, 2,4-dihydroxybenzoate and protocatechuate), respectively. Our data support the hypothesis that the carriers belong to the AAHS family of MFS transporters. Phylogenetic analyses revealed that the orthologs of Hbt permeases are widespread in the subphylum Pezizomycotina, but have a sparse distribution among Saccharomycotina lineages. Moreover, these analyses shed additional light on the evolution of biochemical pathways involved in the catabolic degradation of hydroxyaromatic compounds.


Asunto(s)
Candida parapsilosis/enzimología , Candida parapsilosis/metabolismo , Hidroxibenzoatos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Técnicas de Inactivación de Genes , Proteínas de Transporte de Membrana/genética , Redes y Vías Metabólicas , Filogenia , Homología de Secuencia
4.
G3 (Bethesda) ; 6(12): 4047-4058, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27707801

RESUMEN

The pathogenic yeast Candida parapsilosis metabolizes hydroxyderivatives of benzene and benzoic acid to compounds channeled into central metabolism, including the mitochondrially localized tricarboxylic acid cycle, via the 3-oxoadipate and gentisate pathways. The orchestration of both catabolic pathways with mitochondrial metabolism as well as their evolutionary origin is not fully understood. Our results show that the enzymes involved in these two pathways operate in the cytoplasm with the exception of the mitochondrially targeted 3-oxoadipate CoA-transferase (Osc1p) and 3-oxoadipyl-CoA thiolase (Oct1p) catalyzing the last two reactions of the 3-oxoadipate pathway. The cellular localization of the enzymes indicates that degradation of hydroxyaromatic compounds requires a shuttling of intermediates, cofactors, and products of the corresponding biochemical reactions between cytosol and mitochondria. Indeed, we found that yeast cells assimilating hydroxybenzoates increase the expression of genes SFC1, LEU5, YHM2, and MPC1 coding for succinate/fumarate carrier, coenzyme A carrier, oxoglutarate/citrate carrier, and the subunit of pyruvate carrier, respectively. A phylogenetic analysis uncovered distinct evolutionary trajectories for sparsely distributed gene clusters coding for enzymes of both pathways. Whereas the 3-oxoadipate pathway appears to have evolved by vertical descent combined with multiple losses, the gentisate pathway shows a striking pattern suggestive of horizontal gene transfer to the evolutionarily distant Mucorales.


Asunto(s)
Ascomicetos/metabolismo , Hidrocarburos Aromáticos/metabolismo , Mitocondrias/metabolismo , Acetil-CoA C-Aciltransferasa/genética , Acetil-CoA C-Aciltransferasa/metabolismo , Ascomicetos/clasificación , Ascomicetos/genética , Evolución Biológica , Coenzima A Transferasas/genética , Coenzima A Transferasas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Redes y Vías Metabólicas , Mitocondrias/genética , Mutación , Filogenia , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
5.
FEMS Yeast Res ; 15(3)2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25743787

RESUMEN

The pathogenic yeast Candida albicans utilizes hydroxyderivatives of benzene via the catechol and hydroxyhydroquinone branches of the 3-oxoadipate pathway. The genetic basis and evolutionary origin of this catabolic pathway in yeasts are unknown. In this study, we identified C. albicans genes encoding the enzymes involved in the degradation of hydroxybenzenes. We found that the genes coding for core components of the 3-oxoadipate pathway are arranged into two metabolic gene clusters. Our results demonstrate that C. albicans cells cultivated in media containing hydroxybenzene substrates highly induce the transcription of these genes as well as the corresponding enzymatic activities. We also found that C. albicans cells assimilating hydroxybenzenes cope with the oxidative stress by upregulation of cellular antioxidant systems such as alternative oxidase and catalase. Moreover, we investigated the evolution of the enzymes encoded by these clusters and found that most of them share a particularly sparse phylogenetic distribution among Saccharomycotina, which is likely to have been caused by extensive gene loss. We exploited this fact to find co-evolving proteins that are suitable candidates for the missing enzymes of the pathway.


Asunto(s)
Adipatos/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Enzimas/genética , Redes y Vías Metabólicas/genética , Familia de Multigenes , Fenol/metabolismo , Antioxidantes/metabolismo , Biotransformación , Enzimas/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Orden Génico , Estrés Oxidativo , Filogenia , Sintenía
6.
FEMS Yeast Res ; 13(8): 747-54, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23991648

RESUMEN

BH3-only proteins of the Bcl-2 family regulate programmed cell death in mammals through activation of multidomain proapoptotic proteins Bax and Bak in response to various proapoptotic stimuli by mechanism that remains under dispute. Here, we report that the cell death-promoting activity of BH3-only proteins Bik, Bmf, Noxa, and tBid can only be reconstituted in yeast when both multidomain proapoptotic and antiapoptotic Bcl-2 family proteins are present. Inability of these proteins to induce cell death in the absence of antiapoptotic proteins suggests that all tested BH3-only proteins likely activate Bax and Bak indirectly by inhibiting antiapoptotic proteins.


Asunto(s)
Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Apoptosis/genética , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Expresión Génica , Proteínas Proto-Oncogénicas c-bcl-2/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...