Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 342: 140116, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37699457

RESUMEN

The combination of phytoremediation of soils contaminated by potentially toxic elements with energy production by combustion of the generated biomass can be a sustainable land management option, combining the production of renewable bioenergy with soil restoration while minimising energy consumption and CO2 emission. In this work, plant biomass from phytoremediation of soils contaminated by potentially toxic elements was studied as solid biofuel for combustion by thermal analysis and biomass composition. Six plant species were grown in two soils with differing degrees of contamination: Brassica juncea, Cynara cardunculus, Atriplex halimus, Nicotiana glauca, Dittrichia viscosa, Retama sphaerocarpa and Salvia rosmarinus. The composition of the plant biomass was characterised chemically and thermogravimetric analyses were performed for the mass loss (TG), derivative curves of mass loss (DTG) and temperature difference (DTA) signal. The cellulose concentration correlated with the parameters of the thermal analysis in the low temperature range (150-350 °C), while lignin correlated with the thermal parameters of the second peak in the high temperature range. Salvia rosmarinus and R. sphaerocarpa showed the best combustion characteristics according to the thermal profile and mineral residue results. The accumulation of potentially toxic elements in B. juncea grown in heavily contaminated soil led to a higher amount of residue at 750 °C, with a global activation energy lower than the one obtained when this species was grown in a soil with lower contamination. Therefore, the most beneficial combination of soil phytoremediation and energy production (combustion) that can be suggested would depend on the level of soil contamination: in heavily contaminated soil, phytostabilisation using R. sphaerocarpa and S. rosmarinus; in slightly contaminated soil, B. juncea due to its high energy of activation, although the concentrations of potentially toxic elements in the residue must be controlled, as well as possible particulate matter emissions during combustion.


Asunto(s)
Asteraceae , Contaminantes del Suelo , Suelo/química , Biomasa , Contaminantes del Suelo/análisis , Biodegradación Ambiental
2.
J Environ Manage ; 288: 112365, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33765574

RESUMEN

This study evaluates the effects of electro-oxidation as a means for enhancing sludge stabilisation. Boron-doped diamond electrodes were used to treat waste activated sludge and digestate under different operating parameters (current density, conductivity, pH, and time). Electro-oxidation runs affected the solubilisation of organic matter, which seemed to improve anaerobic digestion and dewaterability characteristics. Among the tested parameters, pre-treating sludge via electro-oxidation under alkaline conditions (Treatment T5) resulted in the highest increase in soluble organic material compared to that in the control, with total organic carbon (TOC) and soluble chemical oxygen demand (COD) values of 2753 and 7819 mg L-1, respectively (control TOC and COD values were 385 and 1073 mg L-1). This pretreatment also achieved a high hydrolysis rate (higher concentration in volatile fatty acids) with a concomitant increase in methane yield (approximately 18%). On the other hand, the application of electro-oxidation as a post-treatment for improving digestate dewaterability resulted in noticeable changes in the release of water during drying due to protein and aliphatic matrix modification of the sample.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Anaerobiosis , Análisis de la Demanda Biológica de Oxígeno , Metano , Aguas del Alcantarillado/análisis
3.
Entropy (Basel) ; 23(2)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503933

RESUMEN

Anaerobic digestion is a well-known technology with wide application in the treatment of high-strength organic wastes. The economic feasibility of this type of installation is usually attained thanks to the availability of fiscal incentives. In this review, an analysis of the different factors associated with this biological treatment and a description of alternatives available in literature for increasing performance of the process were provided. The possible integration of this process into a biorefinery as a way for producing energy and chemical products from the conversion of wastes and biomass also analyzed. The future outlook of anaerobic digestion will be closely linked to circular economy principles. Therefore, this technology should be properly integrated into any production system where energy can be recovered from organics. Digestion can play a major role in any transformation process where by-products need further stabilization or it can be the central core of any waste treatment process, modifying the current scheme by a concatenation of several activities with the aim of increasing the efficiency of the conversion. Thus, current plants dedicated to the treatment of wastewaters, animal manures, or food wastes can become specialized centers for producing bio-energy and green chemicals. However, high installation costs, feedstock dispersion and market distortions were recognized as the main parameters negatively affecting these alternatives.

4.
Waste Manag ; 118: 99-109, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32892099

RESUMEN

The performance of a small-scale prototype digestion plant (7.2 m3 working volume) intended for decentralised operation was evaluated considering energy efficiency and technical suitability for biogas valorisation in producing electrical and thermal energy. The digester operated in recirculation mode to enhance organic matter conversion and improve volatile solid degradation. An energy assessment of the process assumed the incorporation of a combined heat and power (CHP) unit. The coefficient of overall performance of the plant for electrical energy (COPel) was 0.95 - this values was estimated at an electrical efficiency of 22.5% and represents the ratio between energy production and consumption - for a methane yield of 360 L/kg VS and an organic loading rate (OLR) of 1.06 g VS/L d. This parameter was slightly lower than the unit thus indicating that the micro-plant was close to attaining self-sufficiency regarding electrical energy use. The temperature increase of the feed to process conditions supposed a significant amount of thermal energy which highly compromised the efficiency when operating at low organic load, thus accounting for more than 80% of the total energy demand of the installation. When the energy assessment of the process was performed at higher OLR of 2.7 g VS/ L d, the resulting COPel value was1.68, demonstrating the feasibility of this configuration for decentralised digestion.


Asunto(s)
Reactores Biológicos , Metano , Anaerobiosis , Biocombustibles
5.
Environ Monit Assess ; 192(8): 551, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737594

RESUMEN

Changes in consumer demand due to preferences for a healthier lifestyle have led to a new market offering fruit and salad products ready to eat. This affects the agro-industrial sector and the characteristic of waste streams generated having the organic fraction higher quality and representing a new opportunity of valorisation. This study experimentally evaluated the digestion of wastes derived from the fourth range product sector. It was also proposed the use of this digestate as a fermentation medium for producing plant growth-promoting cultures. Three digestion scenarios were studied: Scenario 1 considered biogas valorisation using a combined heat and power (CHP) unit. Scenario 2 featured biogas upgrading to be used as vehicle fuel. Finally, scenario 3 evaluated the transport of waste materials to the digestion plant by a network of pipes and pumps directly from the production chain. All three scenarios included the land application of a biostimulator based on the production of a plant growth-promoting culture derived from digestate. Life cycle analysis and life cycle costing were used to determine potential environmental impacts and costs over a lifetime of 25 years. The study showed that scenario 1 was the most favourable option for valorising this type of waste, although the economic assessment resulted in negative values for all three alternatives.


Asunto(s)
Frutas , Productos Vegetales , Anaerobiosis , Biocombustibles , Monitoreo del Ambiente
6.
Environ Sci Pollut Res Int ; 27(26): 32603-32614, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32514914

RESUMEN

The coupling of biological and thermal technologies allows for the complete conversion of wastes into energy and biochar eliminating the problem of sludge disposal. The valorisation of fatty residues as co-substrate in a mesophilic digester of a wastewater treatment plant was studied considering an integrated approach of co-digestion and pyrolysis. Four digested samples obtained from co-digestion of sewage sludge and butcher's fat waste were studied by thermogravimetric analysis. The activation energy corresponding to the sludge pyrolysis was calculated by a non-isothermal kinetic. Arrhenius activation energy was lower for the pyrolysis of a digested grease sample (92 kJ mol-1 obtained by OFW and 86 kJ mol-1 obtained by Vyazovkin) than for the pyrolysis of sewage sludge and its blends (164-190 kJ mol-1 obtained by OFW and 162-190 kJ mol-1 obtained by Vyazovkin). The analysis of the integrated approach of anaerobic co-digestion and pyrolysis of digestates demonstrated that the addition of 3% (w/v) of fat to the feeding sludge results in a 25% increase in the electricity obtained from biogas (if a combined heat and power unit is considered for biogas valorisation) and increasing the fat content to 15% allows for covering all thermal needs for drying of digestate and more than doubles (2.4 times) the electricity production when the scenario of digestion and pyrolysis is contemplated.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Anaerobiosis , Biocombustibles/análisis , Reactores Biológicos , Metano , Pirólisis
7.
Environ Sci Pollut Res Int ; 27(19): 24387-24399, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32306260

RESUMEN

The effect of char addition on the digestion of animal by-products was evaluated as a way for enhancing the performance of the process. Two different types of carbonaceous materials were tested as carbon conductive elements to improve biological treatment. One was derived from a torrefaction process intended for increasing the energy density of lignocellulosic biomass, and the other was obtained from a hydrothermal carbonisation process. In this research, batch digestion systems of animal waste samples were evaluated at a volatile solid (VS) ratio of 1:1 inoculum-substrate (where the content of the substrate in the system was 1.69 ± 0.2 g). The system reported a baseline methane yield of 380 L CH4 kg VS-1 which increased on average to 470 L CH4 kg VS-1 following to the addition of char. The presence of char allowed a faster degradation of the lipid and protein material, reducing inhibitory interactions. The use of Fourier transformed infrared spectroscopy was applied for elucidating the predetermination of the degradation process and bring an insight into the greater degradation potential attained when carbon materials are used for enhancing microbial performance.


Asunto(s)
Biocombustibles , Reactores Biológicos , Anaerobiosis , Animales , Biomasa , Metano
8.
Environ Sci Pollut Res Int ; 25(25): 25600-25611, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29959741

RESUMEN

The anaerobic digestion process of swine manure was studied when char was used as supplement for improving performance. The use of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was proposed for assessing the organic matter degradation. The assessment on biogas production was carried out using samples of swine manure (SM) supplemented with char in one case and pre-treated by microwave irradiation in the other. This experimental set-up allows for the comparison of the biological degradation observed under these two different configurations and therefore aids in understanding the effect of char particles on the process. Results showed similar performance for both systems, with an average improvement of 39% being obtained in methane production when compared to the single digestion of SM. The analysis of digestate samples by Fourier transform infrared (FTIR) spectroscopy and Py-GC/MS showed improved degradation of proteins, with the Py-GC/MS technique also capable of identifying an increase in microbial-derived material when char was added, therefore highlighting the relevant role of carbon conductive particles on biological systems. Py-GC/MS along with the use of FTIR spectroscopy has proven to be useful tools when evaluating anaerobic digestion.


Asunto(s)
Carbón Orgánico/química , Estiércol/análisis , Porcinos , Anaerobiosis , Animales , Biocombustibles/análisis , Cromatografía de Gases y Espectrometría de Masas , Estiércol/microbiología , Estiércol/efectos de la radiación , Metano/análisis , Microondas , Espectroscopía Infrarroja por Transformada de Fourier
9.
PLoS One ; 13(12): e0210002, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30596755

RESUMEN

Eight yeast strains of the genera Saccharomyces and Kluyveromyces were screened to ferment high lactose-load cheese whey permeate (CWP) (>130 g/L lactose) without nutrient supplementation. The fermentation conditions (temperature, pH and time) were optimized to maximize the fermentation performance (ethanol titer, ethanol yield and lactose consumption) for the two preselected strains, K. marxianus DSM 5422 and S. cerevisiae Ethanol Red, using a response surface methodology (RSM). Under optimized conditions, K. marxianus DSM 5422 attained ethanol titers of 6% (v/v) in only 44 h. Moreover, the feasibility of immobilizing this strain on four different inorganic supports (plastic, glass and Tygon silicone Raschig rings and alumina beads) was assessed. Glass Raschig rings and alumina beads showed a more stable performance over time, yielding ethanol titers of 60 g/L during 1,000 hours, which remarkably reduces yeast cultivation costs. Results demonstrate the feasibility of using CWP for successful ethanol production in a simple and economical process, which represents an attractive alternative for waste treatment in dairy industries.


Asunto(s)
Células Inmovilizadas/metabolismo , Queso , Etanol/metabolismo , Kluyveromyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Suero Lácteo/química , Kluyveromyces/genética , Saccharomyces cerevisiae/genética
10.
J Adv Res ; 8(3): 297-307, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28462003

RESUMEN

The potential of using anaerobic digestion for the treatment of poultry blood has been evaluated in batch assays at the laboratory scale and in a mesophilic semi-continuous reactor. The biodegradability test performed on residual poultry blood was carried out in spite of high inhibitory levels of acid intermediaries. The use of activated carbon as a way to prevent inhibitory conditions demonstrated the feasibility of attaining anaerobic digestion under extreme ammonium and acid conditions. Batch assays with higher carbon content presented higher methane production rates, although the difference in the final cumulative biogas production was not as sharp. The digestion of residual blood was also studied under semi-continuous operation using granular and powdered activated carbon. The average specific methane production was 216 ± 12 mL CH4/g VS. This result was obtained in spite of a strong volatile fatty acid (VFA) accumulation, reaching values around 6 g/L, along with high ammonium concentrations (in the range of 6-8 g/L). The use of powdered activated carbon resulted in a better assimilation of C3-C5 acid forms, indicating that an enhancement in syntrophic metabolism may have taken place. Thermal analysis and scanning electron microscopy (SEM) were applied as analytical tools for measuring the presence of organic material in the final digestate and evidencing modifications on the carbon surface. The addition of activated carbon for the digestion of residual blood highly improved the digestion process. The adsorption capacity of ammonium, the protection this carrier may offer by limiting mass transfer of toxic compounds, and its capacity to act as a conductive material may explain the successful digestion of residual blood as the sole substrate.

11.
Int J Mol Sci ; 16(5): 9385-405, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25918941

RESUMEN

Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2) and lipid production are also explored in an attempt for improving the economic feasibility of the process.


Asunto(s)
Biocombustibles/microbiología , Microbiología Industrial , Administración de Residuos/métodos , Biomasa , Carbono/química , Dióxido de Carbono/química , Química Orgánica , Escherichia coli/metabolismo , Etanol/química , Fermentación , Hidrógeno/química , Lignina/química , Lípidos/química , Microalgas/metabolismo , Saccharomyces cerevisiae/metabolismo , Triglicéridos/química
12.
Artículo en Inglés | MEDLINE | ID: mdl-24171421

RESUMEN

The production of H2 was studied using a packed bed reactor with polyurethane foam acting as support material. Experiments were performed using mixed microflora under non sterile conditions. The system was initially operated with synthetic wastewater as the sole substrate. Subsequently, cheese whey permeate was added to the system at varying organic loading rates (OLR). The performance of the reactor was evaluated by applying a continuous decrease in OLR. As a result, a significant decrease in H2 yields (HY) was observed with the decrease in OLR from 18.8 to 6.3 g chemical oxygen demand (COD)/L d. Microbial analysis demonstrated that the prevalence of non-hydrogen producers, Sporolactobacillus sp. and Prevotella, was the main reason for low HYs obtained. This behavior indicates that the fermentation under non-sterile conditions was favored by high concentrations of substrate by creating an adverse environment for nonhydrogen producer organisms.


Asunto(s)
Reactores Biológicos/microbiología , Queso , Hidrógeno/química , Eliminación de Residuos Líquidos/instrumentación , Eliminación de Residuos Líquidos/métodos , Fermentación , Prevotella/metabolismo
13.
Waste Manag Res ; 31(12): 1195-202, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24163377

RESUMEN

Thermogravimetric analysis coupled to mass spectrometry (TGA-MS) and Fourier-transform infrared spectroscopy (FTIR) were used to describe the effect of pasteurization as a hygienic pre-treatment of animal by-products over biogas production. Piggery and poultry meat wastes were used as substrates for assessing the anaerobic digestion under batch conditions at mesophilic range. Poultry waste was characterized by high protein and carbohydrate content, while piggery waste presented a major fraction of fat and lower carbohydrate content. Results from anaerobic digestion tests showed a lower methane yield for the pre-treated poultry sample. TGA-MS and FTIR spectroscopy allowed the qualitative identification of recalcitrant nitrogen-containing compounds in the pre-treated poultry sample, produced by Maillard reactions. In the case of piggery waste, the recalcitrant compounds were not detected and its biodegradability test reported higher methane yield and production rates. TGA-MS and FTIR spectroscopy were demonstrated to be useful tools for explaining results obtained by anaerobic biodegradability test and in describing the presence of inhibitory problems.


Asunto(s)
Mataderos , Biodegradación Ambiental , Residuos Industriales , Pasteurización , Administración de Residuos/métodos , Anaerobiosis , Animales , Biocombustibles/análisis , Espectrometría de Masas , Carne , Metano/análisis , Aves de Corral , Espectroscopía Infrarroja por Transformada de Fourier , Porcinos , Termogravimetría
14.
Waste Manag ; 33(6): 1332-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23540357

RESUMEN

Anaerobic digestion of livestock wastes (swine manure (SM) and poultry litter (PL)) and vegetable processing wastes (VPW) mixtures was evaluated in terms of methane yield, volatile solids removal and lignocellulosic material degradation. Batch experiments were performed with 2% VS (volatile solids) to ensure complete conversion of TVFAs (total volatile fatty acids) and to avoid ammonia inhibition. Experimental methane yields obtained for the mixtures resulted in higher values than those obtained from the sum of the methane yields from the individual components. VPW addition to livestock wastes before anaerobic digestion also resulted in improved VS elimination. In SM-VPW co-digestions, CH4 yield increased from 111 to 244 mL CH4 g VS added(-1), and the percentage of VS removed increased from 50% to 86%. For PL-VPW co-digestions, the corresponding values were increased from 158 to 223 mL CH4 g VS added(-1) and from 70% to 92% VS removed. Hemicelluloses and more than 50% of cellulose were degraded during anaerobic digestion. Thermal analyses indicated that the stabilization of the wastes during anaerobic digestion resulted in significantly less energy being released by digestate samples than fresh samples.


Asunto(s)
Ganado , Estiércol , Eliminación de Residuos/métodos , Verduras , Residuos , Amoníaco/metabolismo , Anaerobiosis , Animales , Ácidos Grasos Volátiles/análisis , Ácidos Grasos Volátiles/metabolismo , Industria de Procesamiento de Alimentos , Lignina/análisis , Lignina/metabolismo , Metano/metabolismo , Polisacáridos/metabolismo , Aves de Corral , Porcinos
15.
Bioresour Technol ; 101(24): 9479-85, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20709535

RESUMEN

Anaerobic digestion of livestock wastes with carbon rich residues was studied. Swine manure and poultry litter were selected as livestock waste, and vegetable processing waste was selected as the rich carbon source. A Central Composite Design (CCD) and Response Surface Methodology (RSM) were employed in designing experiments and determine individual and interactive effects over methane production and removal of volatile solids. In the case of swine manure co-digestion, an increase in vegetable processing waste resulted in higher volatile solids removal. However, without a proper substrate/biomass ratio, buffer capacity of swine manure was not able to avoid inhibitory effects associated with TVFA accumulation. Regarding co-digestion with poultry litter, substrate concentration determined VS removal achieved, above 80 g VSL(-1), NH(3) inhibition was detected. Statistical analysis allowed us to set initial conditions and parameters to achieve best outputs for real-scale plant operation and/or co-digestion mixtures design.


Asunto(s)
Manipulación de Alimentos , Modelos Estadísticos , Eliminación de Residuos/métodos , Verduras/química , Residuos/análisis , Anaerobiosis , Animales , Ácidos Grasos Volátiles/análisis , Ganado , Estiércol/análisis , Metano/metabolismo , Aves de Corral , Análisis de Regresión , Porcinos , Volatilización
16.
Biodegradation ; 21(4): 543-56, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20012340

RESUMEN

In this paper, Fourier Transform infrared spectroscopy (FTIR) along with thermogravimetric analysis together with mass spectrometry (TG-MS analysis) were employed to study the organic matter transformation attained under anaerobic digestion of slaughterhouse waste and to establish the stability of the digestates obtained when compared with fresh wastes. Digestate samples studied were obtained from successful digestion and failed systems treating slaughterhouse waste and the organic fraction of municipal solid wastes. The FTIR spectra and TG profiles from well stabilized products (from successful digestion systems) showed an increase in the aromaticity degree and the reduction of volatile content and aliphatic structures as stabilization proceeded. On the other hand, the FTIR spectra of non-stable reactors showed a high aliphaticity degree and fat content. When comparing differential thermogravimetry (DTG) profiles of the feed and digestate samples obtained from all successful anaerobic systems, a reduction in the intensity of the low-temperature range (approximately 300 degrees C) peak was observed, while the weight loss experienced at high-temperature (450-550 degrees C) was variable for the different systems. Compared to the original waste, the intensity of the weight loss peak in the high-temperature range decreased in the reactors with higher hydraulic retention time (HRT) whereas its intensity increased and the peak was displaced to higher temperatures for the digesters with lower HRT.


Asunto(s)
Mataderos , Residuos Industriales/análisis , Eliminación de Residuos/métodos , Anaerobiosis , Animales , Biodegradación Ambiental , Espectrometría de Masas , Compuestos Orgánicos/análisis , Espectroscopía Infrarroja por Transformada de Fourier
17.
Biodegradation ; 19(6): 815-30, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18347917

RESUMEN

Compost extract or "compost tea" is a liquid extract of compost obtained by mixing compost and water for a defined period of time. Compost tea contains nutrients and a range of different organisms and is applied to the soil or directly to plants with the principal aim of suppressing certain plant diseases. In addition, the application of compost tea supplies nutrients and organic matter to the soil. Thermal analysis and Fourier transform infrared spectroscopy (FTIR) are two widely applied analytical techniques for establishing the stability of compost, and although numerous studies have evaluated the capacity of compost tea to suppress plant diseases, there are no studies employing these techniques to characterize compost-tea. For the present study, 12 compost extracts were produced under varying conditions in a purpose-built reactor. Two different composts, an stable compost produced from manure and an unstable compost produced from municipal solid waste, respectively, two aeration systems (aerated and non-aerated extracts) and three temperatures (10, 20 and 30 degrees C) were used in these experiments. The extracts were freeze-dried and subsequently analysed, together with the two composts, by means of FTIR and thermal analysis. Extracts produced from high stability compost, independently of the conditions of aeration and temperature, showed very similar results. In contrast, differences among extracts produced from the unstable compost were more noticeable. However, the different conditions of aeration and temperature during the production of the extracts only explained partially these differences, since the transformations undergone by compost over the 3 months that the experiments lasted were also reflected in the composition of the extracts. In spite of everything, extraction process favoured the degradation of easily oxidizable organic matter, which was more abundant in unstable compost. This degradation was more intense for non-aerated processes, probably due to the longer duration of these (10 days) with respect to aerated extractions (2 days). The effect of temperature was not clear in these experiments, although high temperatures could increase micro organism activity and consequently favour the degradation of easily oxidizable organic matter.


Asunto(s)
Suelo/análisis , Biodegradación Ambiental , Estiércol/análisis , Enfermedades de las Plantas , Eliminación de Residuos , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...