Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Plants (Basel) ; 11(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36559540

RESUMEN

The use of reclaimed water is considered an efficient tool for agricultural irrigation; however, the high salinity associated to this water could compromise plant quality and yields. Balm and spearmint plants were submitted for 15 days to three irrigation treatments in a controlled chamber: control with EC: 1.2 dS m-1 (control), reclaimed water from secondary effluent (EC: 1.6 dS m-1) (S) and water from secondary effluent with brine (EC: 4.4 dS m-1) (SB). The plant water status, stomatal and hormonal regulation, nutritional response, concentration of amino acids and plant oxidative stress-based markers, as well as growth were evaluated. Both species irrigated with saline reclaimed water reduced leaf water potential and gas exchange in comparison with control plants, following 2 days of exposure to irrigation treatments. Nevertheless, spearmint plants recovered photosynthetic activity from the seventh day onwards, maintaining growth. This was attributed to hormonal changes and a greater accumulation of some amino acids and some plant oxylipins (phytoprostanes) in comparison to balm plants, which contributed to the improvement in the organoleptic and health-promoting properties of spearmint. A longer irrigation period with saline reclaimed water would be necessary to assess whether the quality of both species, especially spearmint, could further improve without compromising their growth.

3.
J Plant Physiol ; 188: 96-105, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26476190

RESUMEN

Nowadays, irrigation with low quality water is becoming an alternative to satisfy the needs of crops. However, some plant species have to deal with high salinity of reclaimed water, by adapting their physiological behaviour during both saline and recovery periods and developing morphological changes in their leaves. The application of arbuscular mycorrhizal fungi (AMF) could also be a suitable option to mitigate the negative effects of this kind of water, although the effectiveness of plant-AMF association is influenced by many factors. In this work, during forty weeks, the combined effect of Glomus iranicum var. tenuihypharum and two types of water: control, C, EC<0.9 dS m(-1) and reclaimed water, RW (with EC: 4 dS m(-1) during a first saline period and EC: 6 dS m(-1) during a second saline period) was evaluated for laurustinus plants (Viburnum tinus L.) transplanted in soil. This was followed by a recovery period of eight weeks, when all the plants were irrigated in the control irrigation conditions. Seasonal and daily changes in stem water potential (Ψstem), stomatal conductance (gs), photosynthesis (Pn) and leaf internal CO2 concentration (Ci) of laurustinus plants were evaluated. Leaf structure alterations, nutrient imbalance, height and leaf hydraulic conductivity (Kleaf) were also determined. Due to the high difficulty of absorbing water from the soil, RW plants showed a high volumetric water content (θv) in soil. The stem water potential and the stomatal conductance (gs) values were reduced in RW plants throughout the second saline period. These decreases were also found during the day. Leaf Ca(2+)/Na(+) and K(+)/Na(+) ratios diminished in RW plants respect to the C plants due to the Na(+) accumulation, although height and chlorophyll content values did not show statistical differences. Leaves from RW plants showed a significantly thicker mesophyll than Control leaves as a consequence of high EC. The area of palisade parenchyma (PP) increased while the area of spongy parenchyma (SP) decreased in RW leaves with respect to the C leaves. These structural changes could be considered as a strategy to maximize photosynthesis potential in saline conditions. Mycorrhizal inoculation improved the water status of both C and RW plants by increasing their Ψstem and gs values. As regards leaf structure, AMF showed an opposite effect to salinity for PP and SP. At the end of the recovery period, hardly any statistical differences of physiological parameters were found between treatments, although a tendency to improve them was observed in inoculated plants. In any case, the leaf structural changes and the great reduction in Kleaf observed at Ψleaf below -1.5 MPa would constitute an important mechanism for laurustinus plants to reduce the water loses produced by salinity.


Asunto(s)
Micorrizas/fisiología , Cloruro de Sodio/farmacología , Viburnum/metabolismo , Viburnum/microbiología , Aguas Residuales/análisis , Agua/metabolismo , Glomeromycota/fisiología , Hojas de la Planta/anatomía & histología , Salinidad , España , Viburnum/anatomía & histología
4.
Mycorrhiza ; 25(5): 399-409, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25492808

RESUMEN

Currently, irrigation using recycled water is increasing, especially in semiarid environments, but a potential problem of using reclaimed wastewater is its elevated salt levels. The application of arbuscular mycorrhizal fungi (AMF) could be a suitable option to mitigate the negative effects produced by the salinity. In this work, the combined effect of Glomus iranicum var. tenuihypharum and two types of water: Control, C, with EC <0.9 dS m(-1) and reclaimed water (wastewater previously treated in a sewage treatment plant) with EC 4 dS m(-1) during a first saline period (11 weeks) and with EC 6 dS m(-1) during a second saline period (25 weeks), was evaluated for laurustinus (Viburnum tinus) plants under field conditions. This plant is a popular shrub very used for gardening. Chemical properties of soil as well as physiological behavior, leaf nutrition, and esthetic value of plants were evaluated. Due to the high salinity from wastewater at 6 dS m(-1), laurustinus plants decreased their stem water potential values and, to a lesser extent, the stomatal conductance. Also, the visual quality of the plants was diminished. The inoculated AMF satisfactorily colonized the laurustinus roots and enhanced the structure of the soil by increasing the glomalin and carbon contents. Furthermore, G. iranicum var. tenuihypharum inoculation decreased Na and Cl content, stimulated flowering and improved the stem water potential of the plants irrigated with both types of reclaimed water. The AMF also had a positive effect as a consequence of stimulation of plant physiological parameters, such as the stem water potential and stomatal conductance. Effective AMF associations that avoid excessive salinity could provide wastewater reuse options, especially when the plants grow in soils.


Asunto(s)
Glomeromycota , Microbiología del Suelo , Viburnum/microbiología , Viburnum/fisiología , Aguas Residuales , Micorrizas , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Suelo/química , Aguas Residuales/química
5.
J Plant Res ; 126(4): 567-76, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23306649

RESUMEN

For 20 weeks, the physiological responses of Euonymus japonica plants to different irrigation sources were studied. Four irrigation treatments were applied at 100 % water holding capacity: control (electrical conductivity (EC) <0.9 dS m(-1)); irrigation water normally used in the area (irrigator's water) IW (EC: 1.7 dS m(-1)); NaCl solution, NaCl (EC: 4 dS m(-1)); and wastewater, WW (EC: 4 dS m(-1)). This was followed by a recovery period of 13 weeks, when all the plants were rewatered with the same amount and quality of irrigation water as the control plants. Despite the differences in the chemical properties of the water used, the plants irrigated with NaCl and WW showed similar alterations in growth and size compared with the control even at the end of the recovery period. Leaf number was affected even when the EC of the irrigation water was of 1.7 dS m(-1) (IW), indicating the salt sensitivity of this parameter. Stomatal conductance (gs) and photosynthesis (Pn), as well as stem water potential (Ψstem), were most affected in plants irrigated with the most saline waters (NaCl and WW). At the end of the experiment the above parameters recovered, while IW plants showed similar values to the control. The higher Na(+) and Cl(+) uptake by NaCl and WW plants led them to show osmotic adjustment throughout the experiment. The highest amount of boron found in WW plants did not affect root growth. Wastewater can be used as a water management strategy for ornamental plant production, as long as the water quality is not too saline, since the negative effect of salt on the aesthetic value of plants need to be taken into consideration.


Asunto(s)
Euonymus/fisiología , Agua/fisiología , Riego Agrícola , Euonymus/crecimiento & desarrollo , Euonymus/metabolismo , Minerales/análisis , Minerales/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Tallos de la Planta/fisiología , Transpiración de Plantas , Salinidad , Cloruro de Sodio/metabolismo , Calidad del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...