Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36076959

RESUMEN

The sarcomere regulates striated muscle contraction. This structure is composed of several myofibril proteins, isoforms of which are encoded by genes specific to either the heart or skeletal muscle. The chromatin remodeler complex Chd4/NuRD regulates the transcriptional expression of these specific sarcomeric programs by repressing genes of the skeletal muscle sarcomere in the heart. Aberrant expression of skeletal muscle genes induced by the loss of Chd4 in the heart leads to sudden death due to defects in cardiomyocyte contraction that progress to arrhythmia and fibrosis. Identifying the transcription factors (TFs) that recruit Chd4/NuRD to repress skeletal muscle genes in the myocardium will provide important information for understanding numerous cardiac pathologies and, ultimately, pinpointing new therapeutic targets for arrhythmias and cardiomyopathies. Here, we sought to find Chd4 interactors and their function in cardiac homeostasis. We therefore describe a physical interaction between Chd4 and the TF Znf219 in cardiac tissue. Znf219 represses the skeletal-muscle sarcomeric program in cardiomyocytes in vitro and in vivo, similarly to Chd4. Aberrant expression of skeletal-muscle sarcomere proteins in mouse hearts with knocked down Znf219 translates into arrhythmias, accompanied by an increase in PR interval. These data strongly suggest that the physical and genetic interaction of Znf219 and Chd4 in the mammalian heart regulates cardiomyocyte identity and myocardial contraction.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Factores de Transcripción , Animales , Regulación de la Expresión Génica , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Nucleosomas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Front Oncol ; 11: 633233, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33981601

RESUMEN

Chromodomain-helicase-DNA-binding protein 4 (CHD4) is an epigenetic regulator identified as an oncogenic element that may provide a novel therapeutic target for the treatment of breast cancer (BC). CHD4-the core component of the nucleosome remodeling and deacetylase (NuRD) complex-may be mutated in patients with this disease. However, information on CHD4 mutants that might allow their use as biomarkers of therapeutic success and prognosis is lacking. The present work examines mutations in CHD4 reported in patients with breast cancer and included in public databases and attempts to identify their roles in its development. The databases revealed 81 point mutations across different types of breast cancer (19 of which also appeared in endometrial, intestinal, nervous system, kidney, and lymphoid organ cancers). 71.6% of the detected mutations were missense mutations, 13.6% were silent, and 6.2% nonsense. Over 50% affected conserved residues of the ATPase motor (ATPase and helicase domains), and domains of unknown function in the C-terminal region. Thirty one mutations were classified in the databases as either 'deleterious', 'probably/possibly damaging' or as 'high/medium pathogenic'; another five nonsense and one splice-site variant were predicted to produce potentially harmful truncated proteins. Eight of the 81 mutations were categorized as putative driver mutations and have been found in other cancer types. Some mutations seem to influence ATPase and DNA translocation activities (R1162W), while others may alter protein stability (R877Q/H, R975H) or disrupt DNA binding and protein activity (R572*, X34_splice) suggesting CHD4 function may be affected. In vivo tumorigenecity studies in endometrial cancer have revealed R975H and R1162W as mutations that lead to CHD4 loss-of-function. Our study provides insight into the molecular mechanism whereby CHD4, and some of its mutants could play a role in breast cancer and suggest important implications for the biological comprehension and prognosis of breast cancer, identifying CHD4 as a novel therapeutic target for BC patients.

3.
Cell Rep ; 31(7): 107652, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32433961

RESUMEN

Somatic stem cells expand massively during tissue regeneration, which might require control of cell fitness, allowing elimination of non-competitive, potentially harmful cells. How or if such cells are removed to restore organ function is not fully understood. Here, we show that a substantial fraction of muscle stem cells (MuSCs) undergo necroptosis because of epigenetic rewiring during chronic skeletal muscle regeneration, which is required for efficient regeneration of dystrophic muscles. Inhibition of necroptosis strongly enhances suppression of MuSC expansion in a non-cell-autonomous manner. Prevention of necroptosis in MuSCs of healthy muscles is mediated by the chromatin remodeler CHD4, which directly represses the necroptotic effector Ripk3, while CHD4-dependent Ripk3 repression is dramatically attenuated in dystrophic muscles. Loss of Ripk3 repression by inactivation of Chd4 causes massive necroptosis of MuSCs, abolishing regeneration. Our study demonstrates how programmed cell death in MuSCs is tightly controlled to achieve optimal tissue regeneration.


Asunto(s)
Epigénesis Genética/genética , Músculo Esquelético/metabolismo , Necroptosis/genética , Humanos
5.
Cell Metab ; 23(5): 881-92, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27166947

RESUMEN

Heart muscle maintains blood circulation, while skeletal muscle powers skeletal movement. Despite having similar myofibrilar sarcomeric structures, these striated muscles differentially express specific sarcomere components to meet their distinct contractile requirements. The mechanism responsible is still unclear. We show here that preservation of the identity of the two striated muscle types depends on epigenetic repression of the alternate lineage gene program by the chromatin remodeling complex Chd4/NuRD. Loss of Chd4 in the heart triggers aberrant expression of the skeletal muscle program, causing severe cardiomyopathy and sudden death. Conversely, genetic depletion of Chd4 in skeletal muscle causes inappropriate expression of cardiac genes and myopathy. In both striated tissues, mitochondrial function was also dependent on the Chd4/NuRD complex. We conclude that an epigenetic mechanism controls cardiac and skeletal muscle structural and metabolic identities and that loss of this regulation leads to hybrid striated muscle tissues incompatible with life.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN Helicasas/metabolismo , Homeostasis , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Músculo Estriado/metabolismo , Envejecimiento/patología , Animales , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Diferenciación Celular/genética , Islas de CpG/genética , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Ratones Transgénicos , Mitocondrias Cardíacas/metabolismo , Músculo Estriado/embriología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Regiones Promotoras Genéticas/genética , Unión Proteica
6.
Circ Res ; 118(10): 1480-97, 2016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27056911

RESUMEN

RATIONALE: The Notch signaling pathway is crucial for primitive cardiac valve formation by epithelial-mesenchymal transition, and NOTCH1 mutations cause bicuspid aortic valve; however, the temporal requirement for the various Notch ligands and receptors during valve ontogeny is poorly understood. OBJECTIVE: The aim of this study is to determine the functional specificity of Notch in valve development. METHODS AND RESULTS: Using cardiac-specific conditional targeted mutant mice, we find that endothelial/endocardial deletion of Mib1-Dll4-Notch1 signaling, possibly favored by Manic-Fringe, is specifically required for cardiac epithelial-mesenchymal transition. Mice lacking endocardial Jag1, Notch1, or RBPJ displayed enlarged valve cusps, bicuspid aortic valve, and septal defects, indicating that endocardial Jag1 to Notch1 signaling is required for post-epithelial-mesenchymal transition valvulogenesis. Valve dysmorphology was associated with increased mesenchyme proliferation, indicating that Jag1-Notch1 signaling restricts mesenchyme cell proliferation non-cell autonomously. Gene profiling revealed upregulated Bmp signaling in Jag1-mutant valves, providing a molecular basis for the hyperproliferative phenotype. Significantly, the negative regulator of mesenchyme proliferation, Hbegf, was markedly reduced in Jag1-mutant valves. Hbegf expression in embryonic endocardial cells could be readily activated through a RBPJ-binding site, identifying Hbegf as an endocardial Notch target. Accordingly, addition of soluble heparin-binding EGF-like growth factor to Jag1-mutant outflow tract explant cultures rescued the hyperproliferative phenotype. CONCLUSIONS: During cardiac valve formation, Dll4-Notch1 signaling leads to epithelial-mesenchymal transition and cushion formation. Jag1-Notch1 signaling subsequently restrains Bmp-mediated valve mesenchyme proliferation by sustaining Hbegf-EGF receptor signaling. Our studies identify a mechanism of signaling cross talk during valve morphogenesis involved in the origin of congenital heart defects associated with reduced NOTCH function.


Asunto(s)
Válvula Mitral/metabolismo , Morfogénesis , Receptor Notch1/genética , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Unión al Calcio , Transición Epitelial-Mesenquimal , Receptores ErbB/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Válvula Mitral/anomalías , Válvula Mitral/embriología , Receptor Notch1/metabolismo , Regulación hacia Arriba
8.
Arterioscler Thromb Vasc Biol ; 34(10): 2310-20, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25147342

RESUMEN

OBJECTIVE: Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF, activation of the calcineurin/nuclear factor of activated T cells (NFAT) signaling axis has emerged as a critical mediator of angiogenic processes. We and others previously reported a novel role for the plasma membrane calcium ATPase (PMCA) as an endogenous inhibitor of the calcineurin/NFAT pathway, via interaction with calcineurin, in cardiomyocytes and breast cancer cells. However, the functional significance of the PMCA/calcineurin interaction in endothelial pathophysiology has not been addressed thus far. APPROACH AND RESULTS: Using in vitro and in vivo assays, we here demonstrate that the interaction between PMCA4 and calcineurin in VEGF-stimulated endothelial cells leads to downregulation of the calcineurin/NFAT pathway and to a significant reduction in the subsequent expression of the NFAT-dependent, VEGF-activated, proangiogenic genes RCAN1.4 and Cox-2. PMCA4-dependent inhibition of calcineurin signaling translates into a reduction in endothelial cell motility and blood vessel formation that ultimately impairs in vivo angiogenesis by VEGF. CONCLUSIONS: Given the importance of the calcineurin/NFAT pathway in the regulation of pathological angiogenesis, targeted modulation of PMCA4 functionality might open novel therapeutic avenues to promote or attenuate new vessel formation in diseases that occur with angiogenesis.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Calcineurina/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Células Endoteliales/efectos de los fármacos , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica/efectos de los fármacos , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Proteínas de Unión al Calcio , ATPasas Transportadoras de Calcio/deficiencia , ATPasas Transportadoras de Calcio/genética , Movimiento Celular , Proliferación Celular , Ciclooxigenasa 2/metabolismo , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Células Endoteliales/enzimología , Células HEK293 , Miembro Posterior , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Isquemia/enzimología , Isquemia/fisiopatología , Ratones , Ratones Noqueados , Proteínas Musculares/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección
9.
EMBO J ; 33(10): 1117-33, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24596247

RESUMEN

Macrophages contribute to tissue homeostasis and influence inflammatory responses by modulating their phenotype in response to the local environment. Understanding the molecular mechanisms governing this plasticity would open new avenues for the treatment for inflammatory disorders. We show that deletion of calcineurin (CN) or its inhibition with LxVP peptide in macrophages induces an anti-inflammatory population that confers resistance to arthritis and contact hypersensitivity. Transfer of CN-targeted macrophages or direct injection of LxVP-encoding lentivirus has anti-inflammatory effects in these models. Specific CN targeting in macrophages induces p38 MAPK activity by downregulating MKP-1 expression. However, pharmacological CN inhibition with cyclosporin A (CsA) or FK506 did not reproduce these effects and failed to induce p38 activity. The CN-inhibitory peptide VIVIT also failed to reproduce the effects of LxVP. p38 inhibition prevented the anti-inflammatory phenotype of CN-targeted macrophages, and mice with defective p38-activation were resistant to the anti-inflammatory effect of LxVP. Our results identify a key role for CN and p38 in the modulation of macrophage phenotype and suggest an alternative treatment for inflammation based on redirecting macrophages toward an anti-inflammatory status.


Asunto(s)
Calcineurina/metabolismo , Fosfatasa 1 de Especificidad Dual/metabolismo , Macrófagos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Calcineurina/genética , Diferenciación Celular , Línea Celular , Células Cultivadas , Fosfatasa 1 de Especificidad Dual/genética , Citometría de Flujo , Humanos , Immunoblotting , Inmunohistoquímica , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Osteoclastos/citología , Osteoclastos/metabolismo , Fagocitosis/genética , Fagocitosis/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Quinasas p38 Activadas por Mitógenos/genética
10.
Immunity ; 33(5): 685-98, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21093322

RESUMEN

Loss of the transcription factor Ikaros is correlated with Notch receptor activation in T cell acute lymphoblastic leukemia (T-ALL). However, the mechanism remains unknown. We identified promoters in Notch1 that drove the expression of Notch1 proteins in the absence of a ligand. Ikaros bound to both canonical and alternative Notch1 promoters and its loss increased permissive chromatin, facilitating recruitment of transcription regulators. At early stages of leukemogenesis, increased basal expression from the canonical and 5'-alternative promoters initiated a feedback loop, augmenting Notch1 signaling. Ikaros also repressed intragenic promoters for ligand-independent Notch1 proteins that are cryptic in wild-type cells, poised in preleukemic cells, and active in leukemic cells. Only ligand-independent Notch1 isoforms were required for Ikaros-mediated leukemogenesis. Notch1 alternative-promoter usage was observed during T cell development and T-ALL progression. Thus, a network of epigenetic and transcriptional regulators controls conventional and unconventional Notch signaling during normal development and leukemogenesis.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Activación de Linfocitos/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Regiones Promotoras Genéticas , Receptor Notch1/genética , Transducción de Señal/genética , Animales , Epigenómica , Sitios Genéticos , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Ratones , Receptor Notch1/metabolismo , Linfocitos T/metabolismo
11.
Immunity ; 27(5): 723-34, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17980631

RESUMEN

Lineage commitment is induced by changes in gene expression dictated by the intimate interaction between transcription factors and chromatin regulators. Here, we revealed the antagonistic interplay between Ikaros and its associate the chromatin remodeler Mi-2beta during T cell development, as exemplified by the regulation of Cd4 expression. Loss of Ikaros or Mi-2beta led to activation or repression, respectively, of the Cd4 locus at inappropriate stages of development. Their combined mutation reverted to normal CD4 expression. In double-negative thymocytes, Ikaros binding to the Cd4 silencer contributed to its repressive activity. In double-positive thymocytes, concomitant binding of Mi-2beta with Ikaros to the Cd4 silencer caused silencer inactivation, thereby allowing for CD4 expression. Mi-2beta facilitated recruitment of histone acetyl transferases to the silencer. This recruitment possibly antagonized Ikaros and associated repressive activities. Thus, concomitant interactions between functionally opposing chromatin-regulating machineries are an important mode of gene regulation during lineage determination.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Antígenos CD4/genética , Diferenciación Celular/inmunología , Regulación de la Expresión Génica/inmunología , Factor de Transcripción Ikaros/metabolismo , Linfocitos T/citología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/inmunología , Animales , Antígenos CD4/biosíntesis , Linaje de la Célula , ADN Helicasas , Citometría de Flujo , Expresión Génica , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/inmunología , Inmunoprecipitación , Ratones , Mutación , Elementos Silenciadores Transcripcionales , Linfocitos T/inmunología
12.
Mol Cell Biol ; 25(7): 2688-97, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15767674

RESUMEN

Ikaros plays a key role in lymphocyte development and homeostasis by both potentiating and repressing gene expression. Here we show that Ikaros interacts with components of the SUMO pathway and is SUMOylated in vivo. Two SUMOylation sites are identified on Ikaros whose simultaneous modification results in a loss of Ikaros' repression function. Ikaros SUMOylation disrupts its participation in both histone deacetylase (HDAC)-dependent and HDAC-independent repression but does not influence its nuclear localization into pericentromeric heterochromatin. These studies reveal a new dynamic way by which Ikaros-mediated gene repression is controlled by SUMOylation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteína SUMO-1/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Animales , Sitios de Unión , Liasas de Carbono-Nitrógeno/metabolismo , Células Cultivadas , Centrómero/metabolismo , Proteínas de Unión al ADN/genética , Heterocromatina/metabolismo , Humanos , Factor de Transcripción Ikaros , Linfocitos/metabolismo , Ratones , Mutación/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína SUMO-1/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Ubiquitina-Proteína Ligasas/metabolismo
13.
Mol Cell Biol ; 24(7): 2797-807, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15024069

RESUMEN

Ikaros is a key regulator of lymphocyte proliferative responses. Inactivating mutations in Ikaros cause antigen-mediated lymphocyte hyperproliferation and the rapid development of leukemia and lymphoma. Here we show that Ikaros's ability to negatively regulate the G(1)-S transition can be modulated by phosphorylation of a serine/threonine-rich conserved region (p1) in exon 8. Ikaros phosphorylation in p1 is induced during the G(1)-S transition. Mutations that prevent phosphorylation in p1 increase Ikaros's ability to impede cell cycle progression and its affinity for DNA. Casein kinase II, whose increased activity in lymphocytes leads to transformation, is a key player in Ikaros p1 phosphorylation. We thus propose that Ikaros's activity as a regulator of the G(1)-S transition is controlled by phosphorylation in response to signaling events that down-modulate its DNA binding activity.


Asunto(s)
Proteínas de Unión al ADN , Fase G1/fisiología , Isoformas de Proteínas/metabolismo , Fase S/fisiología , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Quinasa de la Caseína II , Línea Celular , Inhibidores Enzimáticos/metabolismo , Humanos , Factor de Transcripción Ikaros , Ratones , Datos de Secuencia Molecular , Fosforilación , Isoformas de Proteínas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...