Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Metabolism ; 83: 177-187, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29466708

RESUMEN

BACKGROUND: Glycogenin-interacting protein 1 (GNIP1) is a tripartite motif (TRIM) protein with E3 ubiquitin ligase activity that interacts with glycogenin. These data suggest that GNIP1 could play a major role in the control of glycogen metabolism. However, direct evidence based on functional analysis remains to be obtained. OBJECTIVES: The aim of this study was 1) to define the expression pattern of glycogenin-interacting protein/Tripartite motif containing protein 7 (GNIP/TRIM7) isoforms in humans, 2) to test their ubiquitin E3 ligase activity, and 3) to analyze the functional effects of GNIP1 on muscle glucose/glycogen metabolism both in human cultured cells and in vivo in mice. RESULTS: We show that GNIP1 was the most abundant GNIP/TRIM7 isoform in human skeletal muscle, whereas in cardiac muscle only TRIM7 was expressed. GNIP1 and TRIM7 had autoubiquitination activity in vitro and were localized in the Golgi apparatus and cytosol respectively in LHCN-M2 myoblasts. GNIP1 overexpression increased glucose uptake in LHCN-M2 myotubes. Overexpression of GNIP1 in mouse muscle in vivo increased glycogen content, glycogen synthase (GS) activity and phospho-GSK-3α/ß (Ser21/9) and phospho-Akt (Ser473) content, whereas decreased GS phosphorylation in Ser640. These modifications led to decreased blood glucose levels, lactate levels and body weight, without changing whole-body insulin or glucose tolerance in mouse. CONCLUSION: GNIP1 is an ubiquitin ligase with a markedly glycogenic effect in skeletal muscle.


Asunto(s)
Proteínas Portadoras/fisiología , Glucógeno/metabolismo , Músculo Esquelético/metabolismo , Animales , Células Cultivadas , Células HEK293 , Humanos , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/patología , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/fisiología
2.
Mol Metab ; 5(1): 5-18, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26844203

RESUMEN

OBJECTIVE: Glycogen metabolism has emerged as a mediator in the control of energy homeostasis and studies in murine models reveal that adipose tissue might contain glycogen stores. Here we investigated the physio(patho)logical role of glycogen in human adipose tissue in the context of obesity and insulin resistance. METHODS: We studied glucose metabolic flux of hypoxic human adipoctyes by nuclear magnetic resonance and mass spectrometry-based metabolic approaches. Glycogen synthesis and glycogen content in response to hypoxia was analyzed in human adipocytes and macrophages. To explore the metabolic effects of enforced glycogen deposition in adipocytes and macrophages, we overexpressed PTG, the only glycogen-associated regulatory subunit (PP1-GTS) reported in murine adipocytes. Adipose tissue gene expression analysis was performed on wild type and homozygous PTG KO male mice. Finally, glycogen metabolism gene expression and glycogen accumulation was analyzed in adipose tissue, mature adipocytes and resident macrophages from lean and obese subjects with different degrees of insulin resistance in 2 independent cohorts. RESULTS: We show that hypoxia modulates glucose metabolic flux in human adipocytes and macrophages and promotes glycogenesis. Enforced glycogen deposition by overexpression of PTG re-orients adipocyte secretion to a pro-inflammatory response linked to insulin resistance and monocyte/lymphocyte migration. Furthermore, glycogen accumulation is associated with inhibition of mTORC1 signaling and increased basal autophagy flux, correlating with greater leptin release in glycogen-loaded adipocytes. PTG-KO mice have reduced expression of key inflammatory genes in adipose tissue and PTG overexpression in M0 macrophages induces a pro-inflammatory and glycolytic M1 phenotype. Increased glycogen synthase expression correlates with glycogen deposition in subcutaneous adipose tissue of obese patients. Glycogen content in subcutaneous mature adipocytes is associated with BMI and leptin expression. CONCLUSION: Our data establish glycogen mishandling in adipose tissue as a potential key feature of inflammatory-related metabolic stress in human obesity.

3.
Artículo en Inglés | MEDLINE | ID: mdl-23366450

RESUMEN

In this study an automatic system is presented to perform electroporation, also known as electropermeabilization, on adherent cells. It is an intention of this system to apply electric field pulses directly to cells growing in standard multi-well plates as a step forward to include this technique in standard laboratory protocols. An interdigitated microelectrode assembly constructed with Printed Circuit Board (PCB) is placed closely above the cell monolayer, and in order to avoid direct contact with cells, small micro-separators were included in the structure. Additionally, distribution of current density was modified by filling the gap between adjacent electrodes with a non conductive material as predicted by electric field simulations. This modification helps to concentrate the electric field intensity in the region where cells are present. The device was tested using C2C12 cell line growing adhered in 24 multi-well plates and fluorescent labeled dextran FD20S as the molecule to be delivered. Successful transfection was observed with minimal invasiveness of the operation reducing the stress caused to cells.


Asunto(s)
Electroporación/métodos , Microelectrodos , Animales , Línea Celular , Supervivencia Celular , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA