Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Clin Immunol ; 257: 109845, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37995947

RESUMEN

BACKGROUND AND OBJECTIVES: COVID-19-associated coagulopathy, shown to increase the risk for the occurrence of thromboses and microthromboses, displays phenotypic features of the antiphospholipid syndrome (APS), a prototype antibody-mediated autoimmune disease. Several groups have reported elevated levels of criteria and non-criteria antiphospholipid antibodies (aPL), assumed to cause APS, during acute or post-acute COVID-19. However, disease heterogeneity of COVID-19 is accompanied by heterogeneity in molecular signatures, including aberrant cytokine profiles and an increased occurrence of autoantibodies. Moreover, little is known about the association between autoantibodies and the clinical events. Here, we first aim to characterise the antiphospholipid antibody, anti-SARS-CoV-2 antibody, and the cytokine profiles in a diverse collective of COVID-19 patients (disease severity: asymptomatic to intensive care), using vaccinated individuals and influenza patients as comparisons. We then aim to assess whether the presence of aPL in COVID-19 is associated with an increased incidence of thrombotic events in COVID-19. METHODS AND RESULTS: We conducted anti-SARS-CoV-2 IgG and IgA microELISA and IgG, IgA, and IgM antiphospholipid line immunoassay (LIA) against 10 criteria and non-criteria antigens in 155 plasma samples of 124 individuals, and we measured 16 cytokines and chemokines in 112 plasma samples. We additionally employed clinical and demographic parameters to conduct multivariable regression analyses within multiple paradigms. In line with recent results, we find that IgM autoantibodies against annexin V (AnV), ß2-glycoprotein I (ß2GPI), and prothrombin (PT) are enriched upon infection with SARS-CoV-2. There was no evidence for seroconversion from IgM to IgG or IgA. PT, ß2GPI, and AnV IgM as well as cardiolipin (CL) IgG antiphospholipid levels were significantly elevated in the COVID-19 but not in the influenza or control groups. They were associated predominantly with the strength of the anti-SARS-CoV-2 antibody titres and the major correlate for thromboses was SARS-CoV-2 disease severity. CONCLUSION: While we have recapitulated previous findings, we conclude that the presence of the aPL, most notably PT, ß2GPI, AnV IgM, and CL IgG in COVID-19 are not associated with a higher incidence of thrombotic events.


Asunto(s)
Síndrome Antifosfolípido , COVID-19 , Gripe Humana , Trombosis , Humanos , Anticuerpos Antifosfolípidos , COVID-19/complicaciones , SARS-CoV-2 , Anticuerpos Anticardiolipina , beta 2 Glicoproteína I , Inmunoglobulina G , Protrombina , Inmunoglobulina A , Inmunoglobulina M , Citocinas
2.
Sci Signal ; 16(766): eabj8194, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36595572

RESUMEN

Staphylococcus aureus can cause infections that are often chronic and difficult to treat, even when the bacteria are not antibiotic resistant because most antibiotics act only on metabolically active cells. Subpopulations of persister cells are metabolically quiescent, a state associated with delayed growth, reduced protein synthesis, and increased tolerance to antibiotics. Serine-threonine kinases and phosphatases similar to those found in eukaryotes can fine-tune essential bacterial cellular processes, such as metabolism and stress signaling. We found that acid stress-mimicking conditions that S. aureus experiences in host tissues delayed growth, globally altered the serine and threonine phosphoproteome, and increased threonine phosphorylation of the activation loop of the serine-threonine protein kinase B (PknB). The deletion of stp, which encodes the only annotated functional serine-threonine phosphatase in S. aureus, increased the growth delay and phenotypic heterogeneity under different stress challenges, including growth in acidic conditions, the intracellular milieu of human cells, and abscesses in mice. This growth delay was associated with reduced protein translation and intracellular ATP concentrations and increased antibiotic tolerance. Using phosphopeptide enrichment and mass spectrometry-based proteomics, we identified targets of serine-threonine phosphorylation that may regulate bacterial growth and metabolism. Together, our findings highlight the importance of phosphoregulation in mediating bacterial quiescence and antibiotic tolerance and suggest that targeting PknB or Stp might offer a future therapeutic strategy to prevent persister formation during S. aureus infections.


Asunto(s)
Antibacterianos , Staphylococcus aureus , Animales , Ratones , Humanos , Staphylococcus aureus/genética , Antibacterianos/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Fosforilación , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
iScience ; 25(10): 105080, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36157573

RESUMEN

Early detection of pathogenic bacteria is needed for rapid diagnostics allowing adequate and timely treatment of infections. In this study, we show that secondary electrospray ionization-high resolution mass spectrometry (SESI-HRMS) can be used as a diagnostic tool for rapid detection of bacterial infections as a supportive system for current state-of-the-art diagnostics. Volatile organic compounds (VOCs) produced by growing S. aureus or S. pneumoniae cultures on blood agar plates were detected within minutes and allowed for the distinction of these two bacteria on a species and even strain level within hours. Furthermore, we obtained a fingerprint of clinical patient samples within minutes of measurement and predominantly observed a separation of samples containing live bacteria compared to samples with no bacterial growth. Further development of this technique may reduce the time required for microbiological diagnosis and should help to improve patient's tailored treatment.

4.
Clin Microbiol Infect ; 28(7): 1022.e1-1022.e7, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35124264

RESUMEN

OBJECTIVES: Difficult-to-treat infections caused by antibiotic-susceptible strains have been linked to the occurrence of persisters, a subpopulation of dormant bacteria that tolerate antibiotic exposure despite lacking genetic resistance. These persisters can be identified phenotypically by plating on nutrient agar because of their altered growth dynamics, resulting in colony-size heterogeneity. The occurrence of within-patient bacterial phenotypic heterogeneity in various infections and clinical determinants of persister formation remains unknown. METHODS: We plated bacteria derived from 132 patient samples of difficult-to-treat infections directly on nutrient-rich agar and monitored colony growth by time-lapse imaging. We retained 36 Staphylococcus aureus monocultures for further analysis. We investigated clinical factors associated with increased colony growth-delay with regression analyses. We corroborated the clinical findings using in vitro grown static biofilms exposed to distinct antibiotics. RESULTS: The extent of phenotypic heterogeneity of patient-derived S. aureus varied substantially between patients (from no delay to a maximum of 57.6 hours). Increased heterogeneity coincided with increased median colony growth-delay. Multivariable regression showed that rifampicin treatment was significantly associated with increased median growth-delay (13.3 hours; 95% CI 7.13-19.6 hours; p < 0.001). S. aureus grown in biofilms and exposed to high concentrations of rifampicin or a combination of rifampicin with clindamycin or levofloxacin exhibited prolonged growth-delay (p < 0.05 for 11 of 12 comparisons), correlating with a strain-dependent increase in antibiotic tolerance. DISCUSSION: Colony-size heterogeneity upon direct sampling of difficult-to-treat S. aureus infections was frequently observed. Hence, future studies are needed to assess the potential benefit of phenotypic heterogeneity quantification for staphylococcal infection prognosis and treatment guidelines.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Agar , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Humanos , Pruebas de Sensibilidad Microbiana , Rifampin , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética
5.
PLoS Pathog ; 18(1): e1010176, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007290

RESUMEN

COVID-19 displays diverse disease severities and symptoms including acute systemic inflammation and hypercytokinemia, with subsequent dysregulation of immune cells. Bacterial superinfections in COVID-19 can further complicate the disease course and are associated with increased mortality. However, there is limited understanding of how SARS-CoV-2 pathogenesis and hypercytokinemia impede the innate immune function against bacterial superinfections. We assessed the influence of COVID-19 plasma hypercytokinemia on the functional responses of myeloid immune cells upon bacterial challenges from acute-phase COVID-19 patients and their corresponding recovery-phase. We show that a severe hypercytokinemia status in COVID-19 patients correlates with the development of bacterial superinfections. Neutrophils and monocytes derived from COVID-19 patients in their acute-phase showed an impaired intracellular microbicidal capacity upon bacterial challenges. The impaired microbicidal capacity was reflected by abrogated MPO and reduced NETs production in neutrophils along with reduced ROS production in both neutrophils and monocytes. Moreover, we observed a distinct pattern of cell surface receptor expression on both neutrophils and monocytes, in line with suppressed autocrine and paracrine cytokine signaling. This phenotype was characterized by a high expression of CD66b, CXCR4 and low expression of CXCR1, CXCR2 and CD15 in neutrophils and low expression of HLA-DR, CD86 and high expression of CD163 and CD11b in monocytes. Furthermore, the impaired antibacterial effector function was mediated by synergistic effect of the cytokines TNF-α, IFN-γ and IL-4. COVID-19 patients receiving dexamethasone showed a significant reduction of overall inflammatory markers in the plasma as well as exhibited an enhanced immune response towards bacterial challenge ex vivo. Finally, broad anti-inflammatory treatment was associated with a reduction in CRP, IL-6 levels as well as length of ICU stay and ventilation-days in critically ill COVID-19 patients. Our data provides insights into the transient functional dysregulation of myeloid immune cells against subsequent bacterial infections in COVID-19 patients and describe a beneficial role for the use of dexamethasone in these patients.


Asunto(s)
COVID-19/microbiología , Síndrome de Liberación de Citoquinas/complicaciones , Citocinas/metabolismo , Monocitos/virología , Neutrófilos/virología , COVID-19/virología , Síndrome de Liberación de Citoquinas/microbiología , Síndrome de Liberación de Citoquinas/virología , Humanos , Linfocitos/inmunología , Linfocitos/microbiología , Linfocitos/virología , Monocitos/inmunología , Monocitos/microbiología , Neutrófilos/inmunología , Neutrófilos/microbiología , SARS-CoV-2/patogenicidad
6.
Antimicrob Agents Chemother ; 66(1): e0096721, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34694884

RESUMEN

Antibiotic-tolerant Staphylococcus aureus poses a great challenge to clinicians as well as to microbiological laboratories and is one reason for treatment failure. Antibiotic-tolerant strains survive transient antibiotic exposure despite being fully susceptible in vitro. Thus, fast and reliable methods to detect tolerance in the routine microbiology laboratory are urgently required. We therefore evaluated the feasibility of the replica plating tolerance isolation system (REPTIS) to detect antibiotic tolerance in Staphylococcus aureus isolates derived directly from patients suffering from different types of infections and investigated possible connections to clinical presentations and patient characteristics. One hundred twenty-five S. aureus isolates were included. Replica plating of the original resistance testing plate was used to assess regrowth in the zones of inhibition, indicating antibiotic tolerance. Bacterial regrowth was assessed after 24 and 48 h of incubation, and an overall regrowth score (ORS) was assigned. Regrowth scores were compared to the clinical presentation. Bacterial regrowth was high for most antibiotics targeting protein synthesis and relatively low for antibiotics targeting other cellular functions such as DNA replication, transcription, and cell wall synthesis, with the exception of rifampin. Isolates with a blaZ penicillinase had lower regrowth in penicillin and ampicillin. Low ORSs were more prevalent among isolates recovered from patients with immunosuppression or methicillin-resistant S. aureus (MRSA) isolates. In conclusion, REPTIS is useful to detect antibiotic tolerance in clinical microbiological routine diagnostics. Further studies should evaluate the impact of rapid detection of antibiotic tolerance as a clinical decision-making tool for tailored antibiotic treatments.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana/genética , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus
7.
Clin Transl Immunology ; 10(12): e1357, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938538

RESUMEN

OBJECTIVES: Critically ill coronavirus disease 2019 (COVID-19) patients are characterised by a severely dysregulated cytokine profile and elevated neutrophil counts, impacting disease severity. However, it remains unclear how neutrophils contribute to pathophysiology during COVID-19. Here, we assessed the impact of the dysregulated cytokine profile on the regulated cell death (RCD) programme of neutrophils. METHODS: Regulated cell death phenotype of neutrophils isolated from critically ill COVID-19 patients or healthy donors and stimulated with COVID-19 or healthy plasma ex vivo was assessed by flow cytometry, time-lapse microscopy and cytokine multiplex analysis. Immunohistochemistry of COVID-19 patients and control biopsies were performed to assess the in situ neutrophil RCD phenotype. Plasma cytokine levels of COVID-19 patients and healthy donors were measured by multiplex analysis. Clinical parameters were correlated to cytokine levels of COVID-19 patients. RESULTS: COVID-19 plasma induced a necroptosis-sensitive neutrophil phenotype, characterised by cell lysis, elevated release of damage-associated molecular patterns (DAMPs), increased receptor-interacting serine/threonine-protein kinase (RIPK) 1 levels and mixed lineage kinase domain-like pseudokinase (MLKL) involvement. The occurrence of neutrophil necroptosis MLKL axis was further confirmed in COVID-19 thrombus and lung biopsies. Necroptosis was induced by the tumor necrosis factor receptor 1 (TNFRI)/TNF-α axis. Moreover, reduction of soluble Fas ligand (sFasL) levels in COVID-19 patients and hence decreased signalling to Fas directly increased RIPK1 levels, exacerbated TNF-driven necroptosis and correlated with disease severity, which was abolished in patients treated with glucocorticoids. CONCLUSION: Our results suggest a novel role for sFasL signalling in the TNF-α-induced RCD programme in neutrophils during COVID-19 and a potential therapeutic target to curb inflammation and thus influence disease severity and outcome.

9.
Microorganisms ; 9(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201716

RESUMEN

The two-component regulatory system 09 of Streptococcus pneumoniae has been shown to modulate resistance against oxidative stress as well as capsule expression. These data and the implication of TCS09 in cell wall integrity have been shown for serotype 2 strain D39. Other data have suggested strain-specific regulatory effects of TCS09. Contradictory data are known on the impact of TCS09 on virulence, but all have been explored using only the rr09-mutant. In this study, we have therefore deleted one or both components of the TCS09 (SP_0661 and SP_0662) in serotype 4 S. pneumoniae TIGR4. In vitro growth assays in chemically defined medium (CDM) using sucrose or lactose as a carbon source indicated a delayed growth of nonencapsulated tcs09-mutants, while encapsulated wild-type TIGR4 and tcs09-mutants have reduced growth in CDM with glucose. Using a set of antigen-specific antibodies, immunoblot analysis showed that only the pilus 1 backbone protein RrgB is significantly reduced in TIGR4ΔcpsΔhk09. Electron microscopy, adherence and phagocytosis assays showed no impact of TCS09 on the TIGR4 cell morphology and interaction with host cells. In contrast, in vivo infections and in particular competitive co-infection experiments demonstrated that TCS09 enhances robustness during dissemination in the host by maintaining bacterial fitness.

10.
Cell Rep Med ; 2(4): 100229, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33748789

RESUMEN

The impact of secondary bacterial infections (superinfections) in coronavirus disease 2019 (COVID-19) is not well understood. In this prospective, monocentric cohort study, we aim to investigate the impact of superinfections in COVID-19 patients with acute respiratory distress syndrome. Patients are assessed for concomitant microbial infections by longitudinal analysis of tracheobronchial secretions, bronchoalveolar lavages, and blood cultures. In 45 critically ill patients, we identify 19 patients with superinfections (42.2%). Superinfections are detected on day 10 after intensive care admission. The proportion of participants alive and off invasive mechanical ventilation at study day 28 (ventilator-free days [VFDs] at 28 days) is substantially lower in patients with superinfection (subhazard ratio 0.37; 95% confidence interval [CI] 0.15-0.90; p = 0.028). Patients with pulmonary superinfections have a higher incidence of bacteremia, virus reactivations, yeast colonization, and required intensive care treatment for a longer time. Superinfections are frequent and associated with reduced VFDs at 28 days despite a high rate of empirical antibiotic therapy.


Asunto(s)
COVID-19/patología , Respiración Artificial , Sobreinfección/diagnóstico , Anciano , Líquido del Lavado Bronquioalveolar/microbiología , COVID-19/complicaciones , COVID-19/virología , Estudios de Cohortes , Enfermedad Crítica , Enterococcus faecalis/aislamiento & purificación , Femenino , Humanos , Incidencia , Unidades de Cuidados Intensivos , Tiempo de Internación , Masculino , Persona de Mediana Edad , Pseudomonas aeruginosa/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , Sobreinfección/complicaciones , Sobreinfección/epidemiología , Factores de Tiempo
11.
Microorganisms ; 9(3)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668344

RESUMEN

Streptococcus pneumoniae two-component regulatory systems (TCSs) are important systems that perceive and respond to various host environmental stimuli. In this study, we have explored the role of TCS09 on gene expression and phenotypic alterations in S. pneumoniae D39. Our comparative transcriptomic analyses identified 67 differently expressed genes in total. Among those, agaR and the aga operon involved in galactose metabolism showed the highest changes. Intriguingly, the encapsulated and nonencapsulated hk09-mutants showed significant growth defects under nutrient-defined conditions, in particular with galactose as a carbon source. Phenotypic analyses revealed alterations in the morphology of the nonencapsulated hk09- and tcs09-mutants, whereas the encapsulated hk09- and tcs09-mutants produced higher amounts of capsule. Interestingly, the encapsulated D39∆hk09 showed only the opaque colony morphology, while the D39∆rr09- and D39∆tcs09-mutants had a higher proportion of transparent variants. The phenotypic variations of D39ΔcpsΔhk09 and D39ΔcpsΔtcs09 are in accordance with their higher numbers of outer membrane vesicles, higher sensitivity against Triton X-100 induced autolysis, and lower resistance against oxidative stress. In conclusion, these results indicate the importance of TCS09 for pneumococcal metabolic fitness and resistance against oxidative stress by regulating the carbohydrate metabolism and thereby, most likely indirectly, the cell wall integrity and amount of capsular polysaccharide.

12.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33574060

RESUMEN

Staphylococcus aureus causes invasive infections and easily acquires antibiotic resistance. Even antibiotic-susceptible S. aureus can survive antibiotic therapy and persist, requiring prolonged treatment and surgical interventions. These so-called persisters display an arrested-growth phenotype, tolerate high antibiotic concentrations, and are associated with chronic and recurrent infections. To characterize these persisters, we assessed S. aureus recovered directly from a patient suffering from a persistent infection. We show that host-mediated stress, including acidic pH, abscess environment, and antibiotic exposure promoted persister formation in vitro and in vivo. Multiomics analysis identified molecular changes in S. aureus in response to acid stress leading to an overall virulent population. However, further analysis of a persister-enriched population revealed major molecular reprogramming in persisters, including down-regulation of virulence and cell division and up-regulation of ribosomal proteins, nucleotide-, and amino acid-metabolic pathways, suggesting their requirement to fuel and maintain the persister phenotype and highlighting that persisters are not completely metabolically inactive. Additionally, decreased aconitase activity and ATP levels and accumulation of insoluble proteins involved in transcription, translation, and energy production correlated with persistence in S. aureus, underpinning the molecular mechanisms that drive the persister phenotype. Upon regrowth, these persisters regained their virulence potential and metabolically active phenotype, including reduction of insoluble proteins, exhibiting a reversible state, crucial for recurrent infections. We further show that a targeted antipersister combination therapy using retinoid derivatives and antibiotics significantly reduced lag-phase heterogeneity and persisters in a murine infection model. Our results provide molecular insights into persisters and help explain why persistent S. aureus infections are so difficult to treat.


Asunto(s)
Farmacorresistencia Bacteriana , Metaboloma , Fenotipo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Aconitato Hidratasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad
13.
Clin Infect Dis ; 73(9): e2869-e2874, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32997739

RESUMEN

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) frequently entails complications that bear similarities to autoimmune diseases. To date, there are little data on possible immunoglobulin (Ig) A-mediated autoimmune responses. Here, we aim to determine whether COVID-19 is associated with a vigorous total IgA response and whether IgA antibodies are associated with complications of severe illness. Since thrombotic events are frequent in severe COVID-19 and resemble hypercoagulation of antiphospholipid syndrome, our approach focused on antiphospholipid antibodies (aPL). METHODS: In this retrospective cohort study, clinical data and aPL from 64 patients with COVID-19 were compared from 3 independent tertiary hospitals (1 in Liechtenstein, 2 in Switzerland). Samples were collected from 9 April to 1 May 2020. RESULTS: Clinical records of 64 patients with COVID-19 were reviewed and divided into a cohort with mild illness (mCOVID; 41%), a discovery cohort with severe illness (sdCOVID; 22%) and a confirmation cohort with severe illness (scCOVID; 38%). Total IgA, IgG, and aPL were measured with clinical diagnostic kits. Severe illness was significantly associated with increased total IgA (sdCOVID, P = .01; scCOVID, P < .001), but not total IgG. Among aPL, both cohorts with severe illness significantly correlated with elevated anticardiolipin IgA (sdCOVID and scCOVID, P < .001), anticardiolipin IgM (sdCOVID, P = .003; scCOVID, P< .001), and anti-beta 2 glycoprotein-1 IgA (sdCOVID and scCOVID, P< .001). Systemic lupus erythematosus was excluded from all patients as a potential confounder. CONCLUSIONS: Higher total IgA and IgA-aPL were consistently associated with severe illness. These novel data strongly suggest that a vigorous antiviral IgA response, possibly triggered in the bronchial mucosa, induces systemic autoimmunity.


Asunto(s)
COVID-19 , Anticuerpos Antifosfolípidos , Humanos , Inmunoglobulina A , Estudios Retrospectivos , SARS-CoV-2
14.
PLoS Pathog ; 15(7): e1007987, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31356624

RESUMEN

Streptococcus pneumoniae (pneumococci) is a leading cause of severe bacterial meningitis in many countries worldwide. To characterize the repertoire of fitness and virulence factors predominantly expressed during meningitis we performed niche-specific analysis of the in vivo proteome in a mouse meningitis model, in which bacteria are directly inoculated into the cerebrospinal fluid (CSF) cisterna magna. We generated a comprehensive mass spectrometry (MS) spectra library enabling bacterial proteome analysis even in the presence of eukaryotic proteins. We recovered 200,000 pneumococci from CSF obtained from meningitis mice and by MS we identified 685 pneumococci proteins in samples from in vitro filter controls and 249 in CSF isolates. Strikingly, the regulatory two-component system ComDE and substrate-binding protein AliB of the oligopeptide transporter system were exclusively detected in pneumococci recovered from the CSF. In the mouse meningitis model, AliB-, ComDE-, or AliB-ComDE-deficiency resulted in attenuated meningeal inflammation and disease severity when compared to wild-type pneumococci indicating the crucial role of ComDE and AliB in pneumococcal meningitis. In conclusion, we show here mechanisms of pneumococcal adaptation to a defined host compartment by a proteome-based approach. Further, this study provides the basis of a promising strategy for the identification of protein antigens critical for invasive disease caused by pneumococci and other meningeal pathogens.


Asunto(s)
Proteínas Bacterianas/fisiología , Proteínas Portadoras/fisiología , Lipoproteínas/fisiología , Meningitis Neumocócica/microbiología , Streptococcus pneumoniae/fisiología , Streptococcus pneumoniae/patogenicidad , Factores de Virulencia/fisiología , Animales , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Genes Bacterianos , Interacciones Microbiota-Huesped/fisiología , Humanos , Lipoproteínas/deficiencia , Lipoproteínas/genética , Masculino , Meningitis Neumocócica/líquido cefalorraquídeo , Ratones , Ratones Endogámicos C57BL , Mutación , Proteómica , Regulón , Streptococcus pneumoniae/genética , Virulencia/genética , Virulencia/fisiología , Factores de Virulencia/genética
15.
Front Microbiol ; 10: 3101, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32117081

RESUMEN

Like eukaryotes, different bacterial species express one or more Ser/Thr kinases and phosphatases that operate in various signaling networks by catalyzing phosphorylation and dephosphorylation of proteins that can immediately regulate biochemical pathways by altering protein function. The human pathogen Streptococcus pneumoniae encodes a single Ser/Thr kinase-phosphatase couple known as StkP-PhpP, which has shown to be crucial in the regulation of cell wall synthesis and cell division. In this study, we applied proteomics to further understand the physiological role of pneumococcal PhpP and StkP with an emphasis on phosphorylation events on Ser and Thr residues. Therefore, the proteome of the non-encapsulated D39 strain (WT), a kinase (ΔstkP), and phosphatase mutant (ΔphpP) were compared in a mass spectrometry based label-free quantification experiment. Results show that a loss of function of PhpP causes an increased abundance of proteins in the phosphate uptake system Pst. Quantitative proteomic data demonstrated an effect of StkP and PhpP on the two-component systems ComDE, LiaRS, CiaRH, and VicRK. To obtain further information on the function, targets and target sites of PhpP and StkP we combined the advantages of phosphopeptide enrichment using titanium dioxide and spectral library based data evaluation for sensitive detection of changes in the phosphoproteome of the wild type and the mutant strains. According to the role of StkP in cell division we identified several proteins involved in cell wall synthesis and cell division that are apparently phosphorylated by StkP. Unlike StkP, the physiological function of the co-expressed PhpP is poorly understood. For the first time we were able to provide a list of previously unknown putative targets of PhpP. Under these new putative targets of PhpP are, among others, five proteins with direct involvement in cell division (DivIVA, GpsB) and peptidoglycan biosynthesis (MltG, MreC, MacP).

16.
mSphere ; 3(3)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29769380

RESUMEN

Streptococcus pneumoniae two-component regulatory systems (TCS) enable adaptation and ensure its maintenance in host environments. This study deciphers the impact of TCS08 on pneumococcal gene expression and its role in metabolic and pathophysiological processes. Transcriptome analysis and real-time PCR demonstrated a regulatory effect of TCS08 on genes involved mainly in environmental information processing, intermediary metabolism, and colonization by S. pneumoniae D39 and TIGR4. Striking examples are genes for fatty acid biosynthesis, genes of the arginine deiminase system, and the psa operon encoding the manganese ABC transport system. In silico analysis confirmed that TCS08 is homologous to Staphylococcus aureus SaeRS, and a SaeR-like binding motif is displayed in the promoter region of pavB, the upstream gene of the tcs08 operon encoding a surface-exposed adhesin. Indeed, PavB is regulated by TCS08 as confirmed by immunoblotting and surface abundance assays. Similarly, pilus-1 of TIGR4 is regulated by TCS08. Finally, in vivo infections using the acute pneumonia and sepsis models showed a strain-dependent effect. Loss of function of HK08 or TCS08 attenuated D39 virulence in lung infections. The RR08 deficiency attenuated TIGR4 in pneumonia, while there was no effect on sepsis. In contrast, lack of HK08 procured a highly virulent TIGR4 phenotype in both pneumonia and sepsis infections. Taken together, these data indicate the importance of TCS08 in pneumococcal fitness to adapt to the milieu of the respiratory tract during colonization.IMPORTANCEStreptococcus pneumoniae interplays with its environment by using 13 two-component regulatory systems and one orphan response regulator. These systems are involved in the sensing of environmental signals, thereby modulating pneumococcal pathophysiology. This study aimed to understand the functional role of genes subject to control by the TCS08. The identified genes play a role in transport of compounds such as sugars or amino acids. In addition, the intermediary metabolism and colonization factors are modulated by TCS08. Thus, TCS08 regulates genes involved in maintaining pneumococcal physiology, transport capacity, and adhesive factors to enable optimal colonization, which represents a prerequisite for invasive pneumococcal disease.


Asunto(s)
Adaptación Fisiológica , Regulación Bacteriana de la Expresión Génica , Metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/fisiología , Bacteriemia/microbiología , Proteínas Bacterianas/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Genes Reguladores , Neumonía Neumocócica/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Virulencia
17.
Int J Med Microbiol ; 308(6): 713-721, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29496408

RESUMEN

Iron is an essential trace element and involved in various key metabolic pathways in bacterial lifestyle. Within the human host, iron is extremely limited. Hence, the ability of bacteria to acquire iron from the environment is critical for a successful infection. Streptococcus pneumoniae (the pneumococcus) is a human pathobiont colonizing symptomless the human respiratory tract, but can also cause various local and invasive infections. To survive and proliferate pneumococci have therefore to adapt their metabolism and virulence factor repertoire to different host compartments. In this study, the response of S. pneumoniae to iron limitation as infection-relevant condition was investigated on the proteome level. The iron limitation was induced by application of the iron chelator 2,2'-bipyridine (BIP) in two different media mimicking different physiological traits. Under these conditions, the influence of the initial iron concentration on pneumococcal protein expression in response to limited iron availability was analyzed. Interestingly, one major difference between these two iron limitation experiments is the regulation of proteins involved in pneumococcal pathogenesis. In iron-poor medium several proteins of this group were downregulated whereas these proteins are upregulated in iron-rich medium. However, iron limitation in both environments led to a strong upregulation of the iron uptake protein PiuA and the significant downregulation of the non-heme iron-containing ferritin Dpr. Based on the results, it is shown that the pneumococcal proteome response to iron limitation is strongly dependent on the initial iron concentration in the medium or the environment.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Proteoma/efectos de los fármacos , Streptococcus pneumoniae/metabolismo , 2,2'-Dipiridil/química , Proteínas Bacterianas/genética , Medios de Cultivo/química , Proteómica , Streptococcus pneumoniae/genética , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
18.
Int J Med Microbiol ; 308(6): 705-712, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29398251

RESUMEN

The Gram-positive bacterium Streptococcus pneumoniae can cause a broad range of severe diseases including pneumonia and septicemia. The pneumococcal pathophysiology is highly dependent on host nutrients such as purines, pyrimidines, amino acids and carbon sources. Therefore, we aimed to decipher the metabolome with a metabolomics approach that allows for the investigation of the basic metabolic characteristics during growth in a chemical defined medium composed of typical host metabolites. By using a combination of 1H-NMR, HPLC-MS and GC-MS methods we monitored extracellular uptake and secretion of metabolites as well as the intracellular metabolic composition. Employing our validated protocol for the pneumococcal intracellular metabolome analysis, a time resolved snapshot of the primary metabolism of pneumococci was obtained. The intracellular metabolic profile indicates a high glycolytic flux and displays high concentrated precursors of peptidoglycan synthesis probably to fuel cell-wall-metabolism in growing cells. Furthermore, our data reflect the biochemical dependency for S. pneumoniae on external host derived nutrients such as nucleosides. These essential pathways may serve as new targets in the drug development against S. pneumoniae.


Asunto(s)
Medios de Cultivo/química , Metabolismo Energético , Metaboloma , Streptococcus pneumoniae/crecimiento & desarrollo , Streptococcus pneumoniae/metabolismo , Aminoácidos/metabolismo , Glucólisis , Metabolómica , Nucleósidos/química , Peptidoglicano/biosíntesis
19.
BMC Genomics ; 19(1): 10, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29298677

RESUMEN

BACKGROUND: In recent years, the idea of a highly immunogenic protein-based vaccine to combat Streptococcus pneumoniae and its severe invasive infectious diseases has gained considerable interest. However, the target proteins to be included in a vaccine formulation have to accomplish several genetic and immunological characteristics, (such as conservation, distribution, immunogenicity and protective effect), in order to ensure its suitability and effectiveness. This study aimed to get comprehensive insights into the genomic organization, population distribution and genetic conservation of all pneumococcal surface-exposed proteins, genetic regulators and other virulence factors, whose important function and role in pathogenesis has been demonstrated or hypothesized. RESULTS: After retrieving the complete set of DNA and protein sequences reported in the databases GenBank, KEGG, VFDB, P2CS and Uniprot for pneumococcal strains whose genomes have been fully sequenced and annotated, a comprehensive bioinformatic analysis and systematic comparison has been performed for each virulence factor, stand-alone regulator and two-component regulatory system (TCS) encoded in the pan-genome of S. pneumoniae. A total of 25 S. pneumoniae strains, representing different pneumococcal phylogenetic lineages and serotypes, were considered. A set of 92 different genes and proteins were identified, classified and studied to construct a pan-genomic variability map (variome) for S. pneumoniae. Both, pneumococcal virulence factors and regulatory genes, were well-distributed in the pneumococcal genome and exhibited a conserved feature of genome organization, where replication and transcription are co-oriented. The analysis of the population distribution for each gene and protein showed that 49 of them are part of the core genome in pneumococci, while 43 belong to the accessory-genome. Estimating the genetic variability revealed that pneumolysin, enolase and Usp45 (SP_2216 in S. p. TIGR4) are the pneumococcal virulence factors with the highest conservation, while TCS08, TCS05, and TCS02 represent the most conserved pneumococcal genetic regulators. CONCLUSIONS: The results identified well-distributed and highly conserved pneumococcal virulence factors as well as regulators, representing promising candidates for a new generation of serotype-independent protein-based vaccine(s) to combat pneumococcal infections.


Asunto(s)
Variación Genética , Streptococcus pneumoniae/genética , Factores de Virulencia/genética , Proteínas Bacterianas/genética , Mapeo Cromosómico , Genes Bacterianos , Genes Reguladores , Genoma Bacteriano , Filogenia , Streptococcus pneumoniae/clasificación , Streptococcus pneumoniae/patogenicidad
20.
Int J Med Microbiol ; 308(6): 722-737, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29221986

RESUMEN

Streptococcus pneumoniae is a human pathobiont possessing a diverse array of multifunctional proteins essential for bacterial fitness and virulence. Gene expression is tightly controlled by regulatory components and among the pneumococcal sensorial tools, two­component regulatory systems (TCS) are the most widespread and conserved. This review aims to provide a comprehensive analysis of original studies on pneumococcal TCS on a functional level. Despite a rather chaotic nomenclature, the current available information on pneumococcal regulation by these systems can be conveniently addressed, according to the regulation of pathophysiological cell processes and the responses to detectable environmental signals. Pneumococcal pathophysiological processes driven by TCS can be further categorized into competence and fratricide, bacteriocin production, and virulence factors expression. Conversely, detectable environmental signals by pneumococci can be grouped into antibiotics and cell wall perturbations, environmental stress, and nutrients acquisition. This review summarizes the state of the art on pneumococcal TCS based on an integral approach and thus providing insights into the regulatory network(s) of S. pneumoniae.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriocinas/metabolismo , Humanos , Infecciones Neumocócicas/microbiología , Transducción de Señal , Streptococcus pneumoniae/patogenicidad , Virulencia , Factores de Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...