Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Intervalo de año de publicación
1.
G3 (Bethesda) ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38626295

RESUMEN

The mosquito Aedes aegypti is the primary vector of many human arboviruses such as dengue, yellow fever, chikungunya and Zika, which affect millions of people world-wide. Population genetics studies on this mosquito have been important in understanding its invasion pathways and success as a vector of human disease. The Axiom aegypti1 SNP chip was developed from a sample of geographically diverse Ae. aegypti populations to facilitate genomic studies on this species. We evaluate the utility of the Axiom aegypti1 SNP chip for population genetics and compare it with a low-depth shot-gun sequencing approach using mosquitoes from the native (Africa) and invasive range (outside Africa). These analyses indicate that results from the SNP chip are highly reproducible and have a higher sensitivity to capture alternative alleles than a low-coverage whole-genome sequencing approach. Although the SNP chip suffers from ascertainment bias, results from population structure, ancestry, demographic and phylogenetic analyses using the SNP chip were congruent with those derived from low coverage whole genome sequencing, and consistent with previous reports on Africa and outside Africa populations using microsatellites. More importantly, we identified a subset of SNPs that can be reliably used to generate merged databases, opening the door to combined analyses. We conclude that the Axiom aegypti1 SNP chip is a convenient, more accurate, low-cost alternative to low-depth whole genome sequencing for population genetic studies of Ae. aegypti that do not rely on full allelic frequency spectra. Whole genome sequencing and SNP chip data can be easily merged, extending the usefulness of both approaches.

2.
Sci Rep ; 14(1): 5578, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38448494

RESUMEN

Trypanosoma cruzi causes Chagas disease and has a unique extranuclear genome enclosed in a structure called the kinetoplast, which contains circular genomes known as maxi- and minicircles. While the structure and function of maxicircles are well-understood, many aspects of minicircles remain to be discovered. Here, we performed a high-throughput analysis of the minicirculome (mcDNA) in 50 clones isolated from Colombia's diverse T. cruzi I populations. Results indicate that mcDNA comprises four diverse subpopulations with different structures, lengths, and numbers of interspersed semi-conserved (previously termed ultra-conserved regions mHCV) and hypervariable (mHVPs) regions. Analysis of mcDNA ancestry and inter-clone differentiation indicates the interbreeding of minicircle sequence classes is placed along diverse strains and hosts. These results support evidence of the multiclonal dynamics and random bi-parental segregation. Finally, we disclosed the guide RNA repertoire encoded by mcDNA at a clonal scale, and several attributes of its abundance and function are discussed.


Asunto(s)
Enfermedad de Chagas , Segregación Social , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/genética , Mitocondrias
3.
Med Vet Entomol ; 37(2): 316-329, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36543747

RESUMEN

Triatoma maculata (Hemiptera, Reduviidae, Triatominae) occurs across dry-to-semiarid ecoregions of northern South America, where it transmits Trypanosoma cruzi, causative agent of Chagas disease. Using 207 field-caught specimens from throughout the species' range, mitochondrial(mt) DNA sequence data, and cytogenetics, we investigated inter-population genetic diversity and the phylogenetic affinities of T. maculata. Mitochondrial DNA sequence analyses (cytb and nd4) disclosed a monophyletic T. maculata clade encompassing three distinct geographic groups: Roraima formation (Guiana shield), Orinoco basin, and Magdalena basin (trans-Andean). Between-group cytb distances (11.0-12.8%) were larger than the ~7.5% expected for sister Triatoma species; the most recent common ancestor of these T. maculata groups may date back to the late Miocene. C-heterochromatin distribution and the sex-chromosome location of 45S ribosomal DNA clusters both distinguished Roraima bugs from Orinoco and Magdalena specimens. Cytb genealogies reinforced that T. maculata is not sister to Triatoma pseudomaculata and probably represents an early (middle-late Miocene) offshoot of the 'South American Triatomini lineage'. In sum, we report extensive genetic diversity and deep phylogeographic structuring in T. maculata, suggesting that it may consist of a complex of at least three sibling taxa. These findings have implications for the systematics, population biology, and perhaps medical relevance of T. maculata sensu lato.


Asunto(s)
Enfermedad de Chagas , Triatoma , Trypanosoma cruzi , Animales , Triatoma/genética , Filogenia , Enfermedad de Chagas/veterinaria , Trypanosoma cruzi/genética , ADN Mitocondrial/genética , Análisis Citogenético/veterinaria
4.
PLoS One ; 17(7): e0263143, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35895627

RESUMEN

Aedes spp. comprise the primary group of mosquitoes that transmit arboviruses such as dengue, Zika, and chikungunya viruses to humans, and thus these insects pose a significant burden on public health worldwide. Advancements in next-generation sequencing and metagenomics have expanded our knowledge on the richness of RNA viruses harbored by arthropods such as Ae. aegypti and Ae. albopictus. Increasing evidence suggests that vector competence can be modified by the microbiome (comprising both bacteriome and virome) of mosquitoes present in endemic zones. Using an RNA-seq-based metataxonomic approach, this study determined the virome structure, Wolbachia presence and mitochondrial diversity of field-caught Ae. aegypti and Ae. albopictus mosquitoes in Medellín, Colombia, a municipality with a high incidence of mosquito-transmitted arboviruses. The two species are sympatric, but their core viromes differed considerably in richness, diversity, and abundance; although the community of viral species identified was large and complex, the viromes were dominated by few virus species. BLAST searches of assembled contigs suggested that at least 17 virus species (16 of which are insect-specific viruses [ISVs]) infect the Ae. aegypti population. Dengue virus 3 was detected in one sample and it was the only pathogenic virus detected. In Ae. albopictus, up to 11 ISVs and one plant virus were detected. Therefore, the virome composition appears to be species-specific. The bacterial endosymbiont Wolbachia was identified in all Ae. albopictus samples and in some Ae. aegypti samples collected after 2017. The presence of Wolbachia sp. in Ae. aegypti was not related to significant changes in the richness, diversity, or abundance of this mosquito's virome, although it was related to an increase in the abundance of Aedes aegypti To virus 2 (Metaviridae). The mitochondrial diversity of these mosquitoes suggested that the Ae. aegypti population underwent a change that started in the second half of 2017, which coincides with the release of Wolbachia-infected mosquitoes in Medellín, indicating that the population of wMel-infected mosquitoes released has introduced new alleles into the wild Ae. aegypti population of Medellín. However, additional studies are required on the dispersal speed and intergenerational stability of wMel in Medellín and nearby areas as well as on the introgression of genetic variants in the native mosquito population.


Asunto(s)
Aedes , Virus de Insectos , Virus ARN , Viroma , Aedes/clasificación , Aedes/virología , Animales , Colombia , Virus de Insectos/genética , Mosquitos Vectores/virología , Virus ARN/genética , Viroma/genética , Wolbachia/genética
5.
Mem Inst Oswaldo Cruz ; 116: e210259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35137904

RESUMEN

BACKGROUND: Panstrongylus rufotuberculatus (Hemiptera-Reduviidae) is a triatomine species with a wide geographic distribution and a broad phenotypic variability. In some countries, this species is found infesting and colonising domiciliary ecotopes representing an epidemiological risk factor as a vector of Trypanosoma cruzi, etiological agent of Chagas disease. In spite of this, little is known about P. rufotuberculatus genetic diversity. METHODS: Cytogenetic studies and DNA sequence analyses of one nuclear (ITS-2) and two mitochondrial DNA sequences (cyt b and coI) were carried out in P. rufotuberculatus individuals collected in Bolivia, Colombia, Ecuador and Mexico. Moreover, a geometric morphometrics study was applied to Bolivian, Colombian, Ecuadorian and French Guiana samples. OBJECTIVES: To explore the genetic and phenetic diversity of P. rufotuberculatus from different countries, combining chromosomal studies, DNA sequence analyses and geometric morphometric comparisons. FINDINGS: We found two chromosomal groups differentiated by the number of X chromosomes and the chromosomal position of the ribosomal DNA clusters. In concordance, two main morphometric profiles were detected, clearly separating the Bolivian sample from the other ones. Phylogenetic DNA analyses showed that both chromosomal groups were closely related to each other and clearly separated from the remaining Panstrongylus species. High nucleotide divergence of cyt b and coI fragments were observed among P. rufotuberculatus samples from Bolivia, Colombia, Ecuador and Mexico (Kimura 2-parameter distances higher than 9%). MAIN CONCLUSIONS: Chromosomal and molecular analyses supported that the two chromosomal groups could represent different closely related species. We propose that Bolivian individuals constitute a new Panstrongylus species, being necessary a detailed morphological study for its formal description. The clear morphometric discrimination based on the wing venation pattern suggests such morphological description might be conclusive.


Asunto(s)
Enfermedad de Chagas , Heterópteros , Panstrongylus , Triatoma , Animales , Humanos , Insectos Vectores/genética , Panstrongylus/genética , Filogenia
6.
Mem Inst Oswaldo Cruz ; 116: e200441, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34259736

RESUMEN

BACKGROUND: A previous phylogeographic study revealed two Aedes aegypti African-related mitochondrial lineages distributed in Colombian's cities with different eco-epidemiologic characteristics with regard to dengue virus (DENV). It has been proposed these lineages might indicate independent invasion sources. OBJECTIVES: Assessing to Colombian population structure and to support evidence of its probable source origin. METHODS: We analysed a total of 267 individuals from cities of Bello, Riohacha and Villavicencio, which 241 were related to the West and East African mitochondrial lineages (termed here as WAL and EAL, respectively). Eight polymorphic microsatellite loci were analysed aiming population structure. FINDINGS: Results indicate substantial gene flow among distant and low-connected cities composing a panmictic population with incipient local differentiation of Ae. aegypti is placed in Colombia. Likewise, genetic evidence indicates no significant differences among individuals related to WAL and EAL is placed. MAIN CONCLUSIONS: Minimal genetic differentiation in low-connected Ae. aegypti populations of Colombia, and lack concordance between mitochondrial and nuclear genealogies suggest that Colombian Ae. aegypti shared a common demographic history. Under this scenario, we suggest current Ae. aegypti population structure reflects a single origin instead of contemporary migration, which founding populations have a single source from a mitochondrial polymorphic African ancient.


Asunto(s)
Aedes , Dengue , Aedes/genética , Animales , Colombia , Variación Genética/genética , Humanos , Filogeografía
7.
Arch Microbiol ; 203(6): 3695-3705, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33978771

RESUMEN

Lago de Tota is the largest highland lake in Colombia and one of the most remarkable of Northern Andean Mountain range. This lake is under an anthropogenic-based eutrophication process as a consequence of non-sustainable agriculture practices developing nearby. Notable relationship between the trophic status and Bacteriome loop dynamics has been increasingly disclosed in lakes worldwide. We performed a 16S sequencing analysis to depict the bacterial community present and we inferred its potential gene function in Lago de Tota. Parameters for determining current trophic condition such as total nitrogen (TN), dissolved carbon (DOC), particulate organic matter (POM), and chlorophyll-a (chl-a) were measured. A total of 440 Operational Taxonomic Units (OTUs) arranged into 50 classes were identified based on V3-V4 regions of the 16S rRNA gene, harboring high-frequent likely found environmental classes such as Actinobacteria, Gammaproteobacteria, Bacteroidia, Acidimicrobia, and Verrucomicrobiae. A total of 26 bacterial classes configure most abundant predicted functional processes involved in organic matter decomposition (i.e., carbohydrate metabolism, amino acid metabolism, xenobiotic biodegradation, and energy metabolism). In general, Actinobacteria, Alphaproteobacteria, and Gammaproteobacteria show the highest potential gene functional contributors, although other low-frequent classes OTUs are also relevant in processes of carbohydrate metabolism, xenobiotic biodegradation, and energy metabolism. The Trophic State Index indicates an oligo-mesotrophic status, and additional variables measured (i.e., POM, DOC) suggest the increasing carbon accumulation. Results provide preliminary evidence for several bacteria groups related to eutrophication of Lago de Tota. Under this picture, we suggest that further studies for Bacteriome loop spatial-temporal description are essential to inform local water quality monitoring strategies.


Asunto(s)
Bacterias/genética , Eutrofización , Lagos/microbiología , Colombia , Microbiota , ARN Ribosómico 16S/genética
8.
Mem. Inst. Oswaldo Cruz ; 116: e210259, 2021. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1360599

RESUMEN

BACKGROUND Panstrongylus rufotuberculatus (Hemiptera-Reduviidae) is a triatomine species with a wide geographic distribution and a broad phenotypic variability. In some countries, this species is found infesting and colonising domiciliary ecotopes representing an epidemiological risk factor as a vector of Trypanosoma cruzi, etiological agent of Chagas disease. In spite of this, little is known about P. rufotuberculatus genetic diversity. METHODS Cytogenetic studies and DNA sequence analyses of one nuclear (ITS-2) and two mitochondrial DNA sequences (cyt b and coI) were carried out in P. rufotuberculatus individuals collected in Bolivia, Colombia, Ecuador and Mexico. Moreover, a geometric morphometrics study was applied to Bolivian, Colombian, Ecuadorian and French Guiana samples. OBJECTIVES To explore the genetic and phenetic diversity of P. rufotuberculatus from different countries, combining chromosomal studies, DNA sequence analyses and geometric morphometric comparisons. FINDINGS We found two chromosomal groups differentiated by the number of X chromosomes and the chromosomal position of the ribosomal DNA clusters. In concordance, two main morphometric profiles were detected, clearly separating the Bolivian sample from the other ones. Phylogenetic DNA analyses showed that both chromosomal groups were closely related to each other and clearly separated from the remaining Panstrongylus species. High nucleotide divergence of cyt b and coI fragments were observed among P. rufotuberculatus samples from Bolivia, Colombia, Ecuador and Mexico (Kimura 2-parameter distances higher than 9%). MAIN CONCLUSIONS Chromosomal and molecular analyses supported that the two chromosomal groups could represent different closely related species. We propose that Bolivian individuals constitute a new Panstrongylus species, being necessary a detailed morphological study for its formal description. The clear morphometric discrimination based on the wing venation pattern suggests such morphological description might be conclusive.

9.
Mem. Inst. Oswaldo Cruz ; 116: e200441, 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1279457

RESUMEN

BACKGROUND A previous phylogeographic study revealed two Aedes aegypti African-related mitochondrial lineages distributed in Colombian's cities with different eco-epidemiologic characteristics with regard to dengue virus (DENV). It has been proposed these lineages might indicate independent invasion sources. OBJECTIVES Assessing to Colombian population structure and to support evidence of its probable source origin. METHODS We analysed a total of 267 individuals from cities of Bello, Riohacha and Villavicencio, which 241 were related to the West and East African mitochondrial lineages (termed here as WAL and EAL, respectively). Eight polymorphic microsatellite loci were analysed aiming population structure. FINDINGS Results indicate substantial gene flow among distant and low-connected cities composing a panmictic population with incipient local differentiation of Ae. aegypti is placed in Colombia. Likewise, genetic evidence indicates no significant differences among individuals related to WAL and EAL is placed. MAIN CONCLUSIONS Minimal genetic differentiation in low-connected Ae. aegypti populations of Colombia, and lack concordance between mitochondrial and nuclear genealogies suggest that Colombian Ae. aegypti shared a common demographic history. Under this scenario, we suggest current Ae. aegypti population structure reflects a single origin instead of contemporary migration, which founding populations have a single source from a mitochondrial polymorphic African ancient.


Asunto(s)
Humanos , Animales , Aedes/genética , Dengue , Variación Genética/genética , Colombia , Filogeografía
10.
Infect Genet Evol ; 85: 104434, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32580028

RESUMEN

Due to the rapid spread of Zika virus (ZIKV) infection after its emergence in the Americas in 2015 and its relationship with birth defects, it became declared a Public Health Emergency of International Concern (WHO). The main mechanism by which this virus circulates in nature is horizontal transmission between vectors and humans. However, it has been suggested that vertical transmission (parent to offspring infection) or venereal mosquito-mosquito transmission may have an important role in viral populations maintenance during inter-epidemic periods. In this study we evaluate the presence of ZIKV in males and females of Aedes aegypti and Ae. albopictus in Medellín, Colombia, throughout the post-epidemic period of 2017 and 2018. A total of 7986 mosquitoes Aedes sp. resting within houses were captured and grouped in 2768 pools; 146 of these were RT-PCR positive for ZIKV, of which 38 (26%) were male mosquito pools (36 of Ae. aegypti and 2 of Ae. albopictus). The partial NS5 gene was sequenced in all ZIKV PCR-positive pools to confirm the ZIKV presence throughout spatial and temporal sampling. The results suggest a vector role of ZIKV by Ae. Albopictus; and because it is well known that male mosquitoes are not hematophagous, the high rate detection of ZIKV in male Aedes mosquitoes pools supports the existence of vertical or venereal transmission in Medellín, which can contribute to ZIKV maintenance during low transmission periods. This study provides a better understanding of the population dynamics of ZIKV in an endemic region during an inter-epidemic period and supports alternative transmission pathways as a mechanism to maintain endemism of this arbovirus.


Asunto(s)
Aedes/virología , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/virología , Virus Zika/genética , Virus Zika/aislamiento & purificación , Animales , Colombia/epidemiología , Vectores de Enfermedades , Femenino , Humanos , Transmisión Vertical de Enfermedad Infecciosa , Masculino , Mosquitos Vectores/virología , Filogenia , ARN Viral , Proteínas no Estructurales Virales/genética , Infección por el Virus Zika/transmisión
11.
Acta Trop ; 182: 291-297, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29408406

RESUMEN

The first step for a successful use of any insect as indicator in forensic sciences is providing a precise taxonomic identification at species level. Due to morphology-based identification of Sarcophaginae flies (Diptera, Sarcophagidae) is often difficult and requires strong taxonomic expertise, their use as forensic indicators has been limited. Consequently, molecular-based approaches have been accepted as alternative means of identification. Thus, we aimed testing the efficiency of the barcode region of the mitochondrial cytochrome oxidase subunit I (COI) gene for identification of synanthropic flesh flies of several species of the genera Peckia, Oxysarcodexia, Ravinia, and Tricharaea collected in Colombia. The 645-bp fragment of COI was amplified and aligned (215 parsimoniously informative variable sites). We calculated Kimura two-parameter genetic distances and reconstruct a Neighbor-Joining phylogenetic tree. Our Neighbor-Joining tree recovered all species as monophyletic, and confirmed a new species of the genus Ravinia as also indicated by the interspecific genetic divergences and morphological observations. We obtained a 100% of identification success. Thus, the COI barcodes showed efficiency as an alternative mean of identification of species of flesh flies collected on decaying organic matter in Colombia.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Sarcofágidos/genética , Animales , Colombia , Complejo IV de Transporte de Electrones/genética , Ciencias Forenses/métodos , Genes Mitocondriales , Filogenia , Sarcofágidos/clasificación , Análisis de Secuencia de ADN
12.
Biomedica ; 37(0): 135-142, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-29161485

RESUMEN

INTRODUCTION: Aedes aegypti and Ae. albopictus are recognized vectors of dengue, yellow fever, chikungunya and Zika arboviruses in several countries worldwide. In Colombia, Ae. albopictus geographical distribution has increased to include highly populated cities such as Cali and Medellín. Although this species has been frequently found in urban and semi-urban zones in the country, its role as vector of the dengue fever is poorly known. OBJECTIVE: To identify the presence of Ae. albopictus specimens naturally infected with dengue virus collected in Medellín. MATERIALS AND METHODS: Insects were collected in the Universidad Nacional de Colombia campus in Medellín. Individuals were classified as Ae. albopictus and confirmed by DNA barcode region analysis. Mosquitoes were processed for dengue virus identification, and a fragment of the NS3 gen was sequenced and compared with DENV-2 genotypes reported in the literature. RESULTS: Sequence analysis of COI indicated Ae. albopictus individuals were similar to those recently reported in Colombia, and genetically close to those from other regions worldwide. Among the pools tested one was positive for DENV-2, and the NS3 analysis indicated it belonged to the Asian-American clade. CONCLUSION: We report the presence Ae. albopictus naturally infected with the Asian-American genotype of DENV-2 in Colombia. The presence of Ae. albopictus specimens carrying the most common genotype infecting humans in a highly populated city such as Medellín indicates its potential role as dengue vector in Colombia and highlights the relevance of including it in current vector surveillance strategies.


Asunto(s)
Aedes/virología , Virus del Dengue/aislamiento & purificación , Dengue/epidemiología , Mosquitos Vectores/virología , Aedes/genética , Animales , Ciudades , Colombia/epidemiología , ADN Complementario/análisis , Dengue/transmisión , Virus del Dengue/clasificación , Virus del Dengue/genética , Complejo IV de Transporte de Electrones/genética , Genotipo , Humanos , Proteínas de Insectos/genética , Reacción en Cadena de la Polimerasa , ARN Helicasas/genética , Serina Endopeptidasas/genética , Serotipificación , Proteínas no Estructurales Virales/genética
13.
Biomédica (Bogotá) ; 37(supl.2): 135-142, jul.-set. 2017. tab, graf
Artículo en Español | LILACS | ID: biblio-888532

RESUMEN

Resumen Introducción. Aedes aegypti y Ae. albopictus son reconocidos vectores de arbovirus como los del dengue, la fiebre amarilla, el chikungunya y el Zika, en regiones tropicales y subtropicales del mundo. En Colombia, la distribución geográfica de Ae. albopictus ha sufrido un incremento y hoy incluye ciudades como Cali y Medellín. Hasta ahora, sin embargo, no se ha recabado información concluyente sobre su infección viral y su capacidad de transmisión a los humanos. Objetivo. Determinar la infección natural por dengue en ejemplares de Ae. albopictus recolectados en un área urbana de Medellín. Materiales y métodos. Se recolectaron individuos de Ae. albopictus en el campus de la Universidad Nacional de Colombia, sede Medellín. Se confirmó su clasificación taxonómica mediante el análisis del gen citocromo oxidasa I (COI), y se extrajo el ARN total para la identificación del virus del dengue y de los respectivos serotipos. La presencia del genotipo DENV se infirió mediante el análisis del gen NS3. Resultados. El análisis del COI corroboró el estatus taxonómico de Ae. albopictus. Uno de los mosquitos procesados fue positivo para DENV-2 y el análisis del NS3 mostró una gran similitud con el genotipo asiático-americano. Conclusión. Se reporta la infección con DENV-2 en Ae. albopictus en Medellín, Colombia. La presencia del genotipo asiático-americano en una zona urbana sugiere su posible circulación entre humanos y en Ae. albopictus, lo cual alerta sobre su eventual papel en la transmisión del DENV-2, y sobre la necesidad de incluir esta especie en la vigilancia entomológica en Colombia.


Abstract Introduction: Aedes aegypti and Ae. albopictus are recognized vectors of dengue, yellow fever, chikungunya and Zika arboviruses in several countries worldwide. In Colombia, Ae. albopictus geographical distribution has increased to include highly populated cities such as Cali and Medellín. Although this species has been frequently found in urban and semi-urban zones in the country, its role as vector of the dengue fever is poorly known. Objective: To identify the presence of Ae. albopictus specimens naturally infected with dengue virus collected in Medellín. Materials and methods: Insects were collected in the Universidad Nacional de Colombia campus in Medellín. Individuals were classified as Ae. albopictus and confirmed by DNA barcode region analysis. Mosquitoes were processed for dengue virus identification, and a fragment of the NS3 gen was sequenced and compared with DENV-2 genotypes reported in the literature. Results: Sequence analysis of COI indicated Ae. albopictus individuals were similar to those recently reported in Colombia, and genetically close to those from other regions worldwide. Among the pools tested one was positive for DENV-2, and the NS3 analysis indicated it belonged to the Asian-American clade. Conclusion: We report the presence Ae. albopictus naturally infected with the Asian-American genotype of DENV-2 in Colombia. The presence of Ae. albopictus specimens carrying the most common genotype infecting humans in a highly populated city such as Medellín indicates its potential role as dengue vector in Colombia and highlights the relevance of including it in current vector surveillance strategies.


Asunto(s)
Animales , Humanos , Aedes/virología , Dengue/epidemiología , Virus del Dengue/aislamiento & purificación , Mosquitos Vectores/virología , Serina Endopeptidasas/genética , Serotipificación , Reacción en Cadena de la Polimerasa , Ciudades , Proteínas no Estructurales Virales/genética , Colombia/epidemiología , ADN Complementario/análisis , Complejo IV de Transporte de Electrones/genética , Proteínas de Insectos/genética , Aedes/genética , ARN Helicasas/genética , Dengue/transmisión , Virus del Dengue/clasificación , Virus del Dengue/genética , Genotipo
14.
Artículo en Inglés | MEDLINE | ID: mdl-27455289

RESUMEN

Colombia is an endemic country for dengue fever where the four serotypes of virus dengue (DENV1-4) circulate simultaneously, and all types are responsible for dengue cases in the country. The control strategies are guided by entomological surveillance. However, heterogeneity in aedic indices is not well correlated with the incidence of the disease in cities such as Riohacha, Bello and Villavicencio. As an alternative, molecular detection of dengue virus in mosquitoes has been proposed as a useful tool for epidemiological surveillance and identification of serotypes circulating in field. We conducted a spatiotemporal fieldwork in these cities to capture adult mosquitoes to assess vector infection and explain the differences between Breteau indices and disease incidence. DENV infection in females and DENV serotype identification were evaluated and infection rates (IR) were estimated. The relationship between density, dengue cases and vector index was also estimated with logistic regression modeling and Pearson's correlation coefficient. The lack of association between aedic indices and dengue incidence is in agreement with the weak associations between the density of the mosquitoes and their infection with DENV in the three cities. However, association was evident between the IR and dengue cases in Villavicencio. Furthermore, we found important negative associations between temperature and lag time from two to six weeks in Riohacha. We conclude that density of mosquitoes is not a good predictor of dengue cases. Instead, IR and temperature might explain better such heterogeneity.


Asunto(s)
Aedes/virología , Virus del Dengue , Dengue/epidemiología , Insectos Vectores/virología , Animales , Ciudades/epidemiología , Colombia/epidemiología , Femenino , Humanos , Incidencia , Serogrupo , Temperatura
15.
Infect Genet Evol ; 43: 274-80, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27268149

RESUMEN

Molecular systematics is a remarkable approach for understanding the taxonomic traits and allows the exploration of the inter-population dynamics of several species in the Triatominae subfamily that are involved in Trypanosoma cruzi transmission. Compared to other relevant species that transmit vector-borne diseases, such as some species of the Diptera, there are relatively few nuclear genetic markers available for systematic studies in the Triatominae subfamily. Molecular systematic studies performed on Triatominae are based on mitochondrial gene fragments and, less frequently, on nuclear ribosomal genes or spacers. Due to the fact that these markers can occasionally present problems such as nuclear mitochondrial genes (NUMTs) or intra-genomic variation for high gene copy numbers, it is necessary to use additional nuclear markers to more reliably address the molecular evolution of Triatominae. In this study, we performed phylogenetic analysis using the nuclear elongation factor-1 alpha (EF-1α) gene in individuals from 12 species belonging to the Triatomini and Rhodniini tribes. Genetic diversities and phylogenetic topologies were compared with those obtained for the mitochondrial 16S rRNA and Cytochrome b (cyt b) genes, as well as for the D2 variable region of the ribosomal 28S rRNA gene. These results indicate that the EF-1α marker exhibits an intermediate level of diversity compared to mitochondrial and nuclear ribosomal genes, and that phylogenetic analysis based on EF-1α is highly informative for resolving deep phylogenetic relationships in Triatominae, such as tribe or genera.


Asunto(s)
Proteínas de Insectos/genética , Insectos Vectores/genética , Factor 1 de Elongación Peptídica/genética , Filogenia , Triatominae/genética , Animales , Citocromos b/genética , ADN Ribosómico/genética , Marcadores Genéticos , Insectos Vectores/clasificación , Insectos Vectores/parasitología , ARN Ribosómico 16S/genética , ARN Ribosómico 28S/genética , Triatominae/clasificación , Triatominae/parasitología , Trypanosoma cruzi/patogenicidad , Trypanosoma cruzi/fisiología
16.
J Vector Ecol ; 41(1): 72-9, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27232127

RESUMEN

The emerging vector of Chagas disease, Triatoma maculata (Hemiptera, Reduviidae), is one of the most widely distributed Triatoma species in northern South America. Despite its increasing relevance as a vector, no consistent picture of the magnitude of genetic and phenetic diversity has yet been developed. Here, several populations of T. maculata from eleven Colombia and Venezuela localities were analyzed based on the morphometry of wings and the mitochondrial NADH dehydrogenase subunit 4 (ND4) gene sequences. Our results showed clear morphometric and genetic differences among Colombian and Venezuelan populations, indicating high intraspecific diversity. Inter-population divergence is suggested related to East Cordillera in Colombia. Analyses of other populations from Colombia, Venezuela, and Brazil from distinct eco-geographic regions are still needed to understand its systematics and phylogeography as well as its actual role as a vector of Chagas disease.


Asunto(s)
Genética de Población , Insectos Vectores/anatomía & histología , Insectos Vectores/genética , Triatoma/anatomía & histología , Triatoma/genética , Animales , Brasil , Enfermedad de Chagas , Colombia , Genes de Insecto , Genes Mitocondriales , Filogeografía , Venezuela , Alas de Animales/anatomía & histología
17.
Infect Genet Evol ; 38: 35-43, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26631812

RESUMEN

Trypanosoma cruzi, the causative agent of Chagas disease, has been classified into six discrete typing units (DTUs) named TcI to TcVI. Furthermore, subcontinental scale studies based on analysis of the splice leader intergenic region (SL-IR) of the mini-exon gene have subdivided TcI in five genetic groups (Ia-Ie) related to the domestic and non-domestic cycles. However, a current review of this marker among all the sequences deposited in the GenBank demonstrates no correlation between the genetic structure and the eco-epidemiological features of parasite transmission. In this study, we performed a multilocus analysis of TcI isolates from a diverse array of hosts and vectors in a wide eco-geographical area of Colombia. Sequences from SL-IR and mitochondrial cyt b genes as well as PCR-RFLP profiles for four nuclear genes were analyzed. Multilocus analysis indicates that genetic structuration associated with sylvatic and domestic cycles in Colombia is not an attribute conserved across the entire eco-geography where TcI can be found.


Asunto(s)
Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/parasitología , Tipificación de Secuencias Multilocus , Trypanosoma cruzi/clasificación , Trypanosoma cruzi/genética , Colombia/epidemiología , Citocromos b/genética , ADN Intergénico , ADN Protozoario , Variación Genética , Haplotipos , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
18.
Infect Genet Evol ; 36: 15-22, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26321302

RESUMEN

The principal vector of Chagas disease in Central America, Triatoma dimidiata, shows considerable diversity of habitat, phenotype, and genotype across its geographic range (central Mexico to southern Ecuador), suggesting that it constitutes a complex of cryptic species. However, no consistent picture of the magnitude of ecological differentiation among populations of this complex has yet been developed. To assess ecological variation across the complex, we broadened the geographic coverage of phylogeographic data and analyses for the complex into Colombia and Mexico, with additional nuclear (ITS-2) and mitochondrial (ND4) DNA sequences. This information allowed us to describe distributions of previously documented clades in greater detail: Group I, from central Guatemala south to Ecuador; Group II, across Mexico south through the Yucatán Peninsula to Belize and northern Guatemala; and Group III, in northern Guatemala, Belize, and the Yucatán Peninsula. Using ecological niche modeling, we assessed ecological niche differentiation among the groups using four hypotheses of accessible areas (M) across the distribution of the complex. Results indicated clear niche divergence of Group I from Group II: the speciation process thus appears to have involved genetic and ecological changes, suggesting divergence in populations in response to environmental conditions.


Asunto(s)
Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/transmisión , Ecología , Insectos Vectores/clasificación , Topografía Médica , Triatoma/clasificación , Animales , América Central/epidemiología , Colombia/epidemiología , ADN Intergénico , Análisis Discriminante , Ambiente , Genes Protozoarios , Haplotipos , Humanos , Insectos Vectores/genética , México/epidemiología , Modelos Teóricos , Filogenia , Filogeografía , Triatoma/genética
19.
Parasit Vectors ; 8: 482, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26394766

RESUMEN

BACKGROUND: In Colombia, Rhodnius prolixus and Triatoma dimidiata are the main domestic triatomine species known to transmit T. cruzi. However, there are multiple reports of T. cruzi transmission involving secondary vectors. In this work, we carried out an eco-epidemiological study on Margarita Island, located in the Caribbean region of Colombia, where Chagas disease is associated with non-domiciliated vectors. METHODS: To understand the transmission dynamics of Trypanosoma cruzi in this area, we designed a comprehensive, multi-faceted study including the following: (i) entomological evaluation through a community-based insect-surveillance campaign, blood meal source determination and T. cruzi infection rate estimation in triatomine insects; (ii) serological determination of T. cruzi prevalence in children under 15 years old, as well as in domestic dogs and synanthropic mammals; (iii) evaluation of T. cruzi transmission capacity in dogs and Didelphis marsupialis, and (iv) genetic characterization of T. cruzi isolates targeting spliced-leader intergene region (SL-IR) genotypes. RESULTS: Out of the 124 triatomines collected, 94% were Triatoma maculata, and 71.6% of them were infected with T. cruzi. Blood-meal source analysis showed that T. maculata feeds on multiple hosts, including humans and domestic dogs. Serological analysis indicated 2 of 803 children were infected, representing a prevalence of 0.25%. The prevalence in domestic dogs was 71.6% (171/224). Domestic dogs might not be competent reservoir hosts, as inferred from negative T. cruzi xenodiagnosis and haemoculture tests. However, 61.5% (8/13) of D. marsupialis, the most abundant synanthropic mammal captured, were T. cruzi-positive on xenodiagnosis and haemocultures. CONCLUSIONS: This study reveals the role of peridomestic T. maculata and dogs in T. cruzi persistence in this region and presents evidence that D. marsupialis are a reservoir mediating peridomestic-zoonotic cycles. This picture reflects the complexity of the transmission dynamics of T. cruzi in an endemic area with non-domiciliated vectors where active human infection exists. There is an ongoing need to control peridomestic T. maculata populations and to implement continuous reservoir surveillance strategies with community participation.


Asunto(s)
Enfermedad de Chagas/epidemiología , Didelphis/parasitología , Transmisión de Enfermedad Infecciosa , Perros/parasitología , Triatoma/parasitología , Trypanosoma cruzi/aislamiento & purificación , Adolescente , Animales , Región del Caribe/epidemiología , Enfermedad de Chagas/transmisión , Enfermedad de Chagas/veterinaria , Niño , Preescolar , Colombia/epidemiología , Reservorios de Enfermedades , Genotipo , Humanos , Insectos Vectores , Estudios Seroepidemiológicos , Trypanosoma cruzi/clasificación , Trypanosoma cruzi/genética
20.
PLoS Negl Trop Dis ; 9(4): e0003553, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25893246

RESUMEN

BACKGROUND: Aedes aegypti is the primary vector of the four serotypes of dengue virus (DENV1-4), Chikungunya and yellow fever virus to humans. Previous population genetic studies have revealed a particular genetic structure among the vector populations in the Americas that suggests differences in the ability to transmit DENV. In Colombia, despite its high epidemiologic importance, the genetic population structure and the phylogeographic depiction of Ae. aegypti, as well as its relationship with the epidemiologic landscapes in cities with heterogeneous incidence levels, remains unknown. We conducted a spatiotemporal analysis with the aim of determining the genetic structure and phylogeography of Colombian populations of Ae. aegypti among cities with different eco-epidemiologic characteristics with regard to DENV. METHODS/FINDINGS: Mitochondrial cytochrome oxidase C subunit 1 (COI)--NADH dehydrogenase subunit 4 (ND4) genes were sequenced and analyzed from 341 adult mosquitoes collected during 2012 and 2013 in the Colombian cities of Bello, Riohacha and Villavicencio, which exhibit low, medium and high levels of incidence of DENV, respectively. The results demonstrated a low genetic differentiation over time and a high genetic structure between the cities due to changes in the frequency of two highly supported genetic groups. The phylogeographic analyses indicated that one group (associated with West African populations) was found in all the cities throughout the sampling while the second group (associated with East African populations) was found in all the samples from Bello and in only one sampling from Riohacha. Environmental factors such as the use of chemical insecticides showed a significant correlation with decreasing genetic diversity, indicating that environmental factors affect the population structure of Ae. aegypti across time and space in these cities. CONCLUSIONS: Our results suggest that two Ae. aegypti lineages are present in Colombia; one that is widespread and related to a West African conspecific, and a second that may have been recently introduced and is related to an East African conspecific. The first lineage can be found in cities showing a high incidence of dengue fever and the use of chemical insecticides, whereas the second is present in cities showing a low incidence of dengue fever where the use of chemical insecticides is not constant. This study helps to improve our knowledge of the population structure of Ae. aegypti involved in the diversity of dengue fever epidemiology in Colombia.


Asunto(s)
Aedes/genética , ADN Mitocondrial/genética , Dengue/transmisión , Insectos Vectores/genética , Aedes/virología , Animales , Ciudades , Colombia/epidemiología , Dengue/epidemiología , Virus del Dengue/aislamiento & purificación , Virus del Dengue/fisiología , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Regulación Enzimológica de la Expresión Génica , Variación Genética , Humanos , Incidencia , Datos de Secuencia Molecular , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Filogeografía , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...