Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Channels (Austin) ; 12(1): 299-310, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30126342

RESUMEN

Heteromers of Kv7.2/Kv7.3 subunits constitute the main substrate of the neuronal M-current that limits neuronal hyper-excitability and firing frequency. Calmodulin (CaM) binding is essential for surface expression of Kv7 channels, and disruption of this interaction leads to diseases ranging from mild epilepsy to early onset encephalopathy. In this study, we addressed the impact of a charge neutralizing mutation located at the periphery of helix B (K526N). We found that, CaM binding and surface expression was impaired, although current amplitude was not altered. Currents were reduced at a faster rate after activation of a voltage-dependent phosphatase, suggesting that phosphatidylinositol-4,5-bisphosphate (PIP2) binding was weaker. In contrast, a charge neutralizing mutation located at the periphery of helix A (R333Q) did not affect CaM binding, but impaired trafficking and led to a reduction in current amplitude. Taken together, these results suggest that disruption of CaM-dependent or CaM-independent trafficking of Kv7.2/Kv7.3 channels can lead to pathology regardless of the consequences on the macroscopic ionic flow through the channel.


Asunto(s)
Calmodulina/metabolismo , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Animales , Células HEK293 , Humanos , Canal de Potasio KCNQ2/química , Unión Proteica , Dominios Proteicos , Propiedades de Superficie , Xenopus
2.
Nat Commun ; 6: 6672, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25818916

RESUMEN

Voltage-gated channels open paths for ion permeation upon changes in membrane potential, but how voltage changes are coupled to gating is not entirely understood. Two modules can be recognized in voltage-gated potassium channels, one responsible for voltage sensing (transmembrane segments S1 to S4), the other for permeation (S5 and S6). It is generally assumed that the conversion of a conformational change in the voltage sensor into channel gating occurs through the intracellular S4-S5 linker that provides physical continuity between the two regions. Using the pathophysiologically relevant KCNH family, we show that truncated proteins interrupted at, or lacking the S4-S5 linker produce voltage-gated channels in a heterologous model that recapitulate both the voltage-sensing and permeation properties of the complete protein. These observations indicate that voltage sensing by the S4 segment is transduced to the channel gate in the absence of physical continuity between the modules.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio con Entrada de Voltaje/química , Animales , Canales de Potasio Éter-A-Go-Go/metabolismo , Immunoblotting , Inmunoprecipitación , Oocitos/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/metabolismo , Estructura Terciaria de Proteína , Xenopus laevis
3.
J Cell Sci ; 126(Pt 1): 244-53, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23203804

RESUMEN

Among the multiple roles assigned to calmodulin (CaM), controlling the surface expression of Kv7.2 channels by binding to two discontinuous sites is a unique property of this Ca(2+) binding protein. Mutations that interfere with CaM binding or the sequestering of CaM prevent this M-channel component from exiting the endoplasmic reticulum (ER), which reduces M-current density in hippocampal neurons, enhancing excitability and offering a rational mechanism to explain some forms of benign familial neonatal convulsions (BFNC). Previously, we identified a mutation (S511D) that impedes CaM binding while allowing the channel to exit the ER, hinting that CaM binding may not be strictly required for Kv7.2 channel trafficking to the plasma membrane. Alternatively, this interaction with CaM might escape detection and, indeed, we now show that the S511D mutant contains functional CaM-binding sites that are not detected by classical biochemical techniques. Surface expression and function is rescued by CaM, suggesting that free CaM in HEK293 cells is limiting and reinforcing the hypothesis that CaM binding is required for ER exit. Within the CaM-binding domain formed by two sites (helix A and helix B), we show that CaM binds to helix B with higher apparent affinity than helix A, both in the presence and absence of Ca(2+), and that the two sites cooperate. Hence, CaM can bridge two binding domains, anchoring helix A of one subunit to helix B of another subunit, in this way influencing the function of Kv7.2 channels.


Asunto(s)
Calmodulina/metabolismo , Canal de Potasio KCNQ2/química , Canal de Potasio KCNQ2/metabolismo , Sitios de Unión , Calmodulina/genética , Electrofisiología , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Inmunoprecipitación , Canal de Potasio KCNQ2/genética , Mutación , Unión Proteica/genética , Unión Proteica/fisiología , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
4.
J Biol Chem ; 287(15): 11870-7, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22334706

RESUMEN

Voltage-gated K(+) channels composed of Kv7.2 and Kv7.3 are the predominant contributors to the M-current, which plays a key role in controlling neuronal activity. Various lines of evidence have indicated that Kv7.2 and Kv7.3 form a heteromeric channel. However, the subunit stoichiometry and arrangement within this putative heteromer are so far unknown. Here, we have addressed this question using atomic force microscopy imaging of complexes between isolated Kv7.2/Kv7.3 channels and antibodies to epitope tags on the two subunits, Myc on Kv7.2 and HA on Kv7.3. Initially, tsA 201 cells were transiently transfected with equal amounts of cDNA for the two subunits. The heteromer was isolated through binding of either tag to immunoaffinity beads and then decorated with antibodies to the other tag. In both cases, the distribution of angles between pairs of bound antibodies had two peaks, at around 90° and around 180°, and in both cases the 90° peak was about double the size of the 180° peak. These results indicate that the Kv7.2/Kv7.3 heteromer generated by cells expressing approximately equal amounts of the two subunits assembles as a tetramer with a predominantly 2:2 subunit stoichiometry and with a random subunit arrangement. When the DNA ratio for the two subunits was varied, copurification experiments indicated that the subunit stoichiometry was variable and not fixed at 2:2. Hence, there are no constraints on either the subunit stoichiometry or the subunit arrangement.


Asunto(s)
Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Multimerización de Proteína , Línea Celular , Humanos , Canal de Potasio KCNQ2/química , Canal de Potasio KCNQ2/aislamiento & purificación , Canal de Potasio KCNQ3/química , Canal de Potasio KCNQ3/aislamiento & purificación , Microscopía de Fuerza Atómica , Microscopía Confocal , Unión Proteica , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
5.
PLoS One ; 6(9): e25508, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21980481

RESUMEN

M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC), a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function.


Asunto(s)
Calmodulina/metabolismo , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Canal de Potasio KCNQ2/química , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/química , Canal de Potasio KCNQ3/genética , Datos de Secuencia Molecular , Mutación , Estructura Secundaria de Proteína , Transporte de Proteínas
6.
J Neurosci ; 30(27): 9316-23, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20610766

RESUMEN

KCNQ2 (Kv7.2) and KCNQ3 (Kv7.3) are the principal subunits underlying the potassium M-current, which exerts a strong control on neuronal excitability. KCNQ3 subunits coassemble with KCNQ2 to form functional heteromeric channels that are specifically transported to the axonal initial segment and nodes of Ranvier. In contrast, there is no evidence for functional homomeric KCNQ3 channels in neurons, and it appears that these are inefficiently trafficked to the plasma membrane. Among eukaryotic potassium channels, the KCNQ3 subunit is unusual because it has an alanine in place of a threonine at the pore inner vestibule, three residues upstream of the GYG signature sequence of the selectivity filter. This residue is critical for the potentiation of the current after heteromerization, but the mechanism is unknown. We report that the presence of this uncommon residue at position 315 has a strong impact on the stability of the homotetramers and on channel trafficking. Wild-type KCNQ3 expressed alone is retained within the endoplasmic reticulum, and this mechanism is overcome by the substitution of threonine for Ala315. KCNQ3 subunits require assembly with KCNQ2 to exit this compartment, whereas KCNQ3-A315T is no longer dependent on KCNQ2 to form channels that are efficiently trafficked to the plasma membrane. The presence of this alanine, therefore, plays an important role in regulating the subunit composition of functional M-channels expressed at the surface of neurons.


Asunto(s)
Membrana Celular/metabolismo , Regulación de la Expresión Génica/fisiología , Canal de Potasio KCNQ3/química , Canal de Potasio KCNQ3/metabolismo , Alanina/metabolismo , Sustitución de Aminoácidos/genética , Animales , Proteínas Bacterianas/genética , Línea Celular Transformada , Membrana Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Inmunoprecipitación/métodos , Activación del Canal Iónico/genética , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Proteínas Luminiscentes/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Oocitos , Técnicas de Placa-Clamp/métodos , Bloqueadores de los Canales de Potasio/farmacología , Relación Estructura-Actividad , Tetraetilamonio/farmacocinética , Transducción Genética/métodos , Xenopus
7.
J Biol Chem ; 284(31): 20668-75, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19494108

RESUMEN

The potential regulation of protein trafficking by calmodulin (CaM) is a novel concept that remains to be substantiated. We proposed that KCNQ2 K+ channel trafficking is regulated by CaM binding to the C-terminal A and B helices. Here we show that the L339R mutation in helix A, which is linked to human benign neonatal convulsions, perturbs CaM binding to KCNQ2 channels and prevents their correct trafficking to the plasma membrane. We used glutathione S-transferase fused to helices A and B to examine the impact of this and other mutations in helix A (I340A, I340E, A343D, and R353G) on the interaction with CaM. The process appears to require at least two steps; the first involves the transient association of CaM with KCNQ2, and in the second, the complex adopts an "active" conformation that is more stable and is that which confers the capacity to exit the endoplasmic reticulum. Significantly, the mutations that we have analyzed mainly affect the stability of the active configuration of the complex, whereas Ca2+ alone appears to affect the initial binding step. The spectrum of responses from this collection of mutants revealed a strong correlation between adopting the active conformation and channel trafficking in mammalian cells. These data are entirely consistent with the concept that CaM bound to KCNQ2 acts as a Ca2+ sensor, conferring Ca2+ dependence to the trafficking of the channel to the plasma membrane and fully explaining the requirement of CaM binding for KCNQ2 function.


Asunto(s)
Calmodulina/metabolismo , Retículo Endoplásmico/metabolismo , Canal de Potasio KCNQ2/metabolismo , Animales , Sitios de Unión , Línea Celular , Humanos , Canal de Potasio KCNQ2/química , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Ratas , Espectrometría de Fluorescencia , Xenopus
8.
FASEB J ; 22(4): 1135-43, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17993630

RESUMEN

Voltage-dependent potassium KCNQ2 (Kv7.2) channels play a prominent role in the control of neuronal excitability. These channels must associate with calmodulin to function correctly and, indeed, a mutation (R353G) that impairs this association provokes the onset of a form of human neonatal epilepsy known as benign familial neonatal convulsions (BFNC). We show here that perturbation of calmodulin binding leads to endoplasmic reticulum (ER) retention of KCNQ2, reducing the number of channels that reach the plasma membrane. Interestingly, elevating the expression of calmodulin in the BFNC mutant partially restores the intracellular distribution of the KCNQ channel. In contrast, overexpression of a Ca(2+)-binding incompetent calmodulin or sequestering of calmodulin promotes the retention of wild-type channels in the ER. Thus, a direct interaction with Ca(2+)-calmodulin appears to be critical for the correct activity of KCNQ2 potassium channels as it controls the channels' exit from the ER.


Asunto(s)
Calmodulina/metabolismo , Canal de Potasio KCNQ2/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Retículo Endoplásmico/metabolismo , Humanos , Canal de Potasio KCNQ3/metabolismo , Mutación , Técnicas de Placa-Clamp , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...