Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cancers (Basel) ; 15(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36765855

RESUMEN

Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world. Studies of CLL antibody reactivity have shown differential targets to autoantigens and antimicrobial molecular motifs that support the current hypothesis of CLL pathogenesis. METHODS: In this study, we conducted a quantitative serum analysis of 7 immunoglobulins in CLL and monoclonal B-cell lymphocytosis (MBL) patients (bead-suspension protein arrays) and a serological profile (IgG and IgM) study of autoantibodies and antimicrobial antigens (protein microarrays). RESULTS: Significant differences in the IgA levels were observed according to disease progression and evolution as well as significant alterations in IgG1 according to IGHV mutational status. More representative IgG autoantibodies in the cohort were against nonmutagenic proteins and IgM autoantibodies were against vesicle proteins. Antimicrobial IgG and IgM were detected against microbes associated with respiratory tract infections. CONCLUSIONS: Quantitative differences in immunoglobulin serum levels could be potential biomarkers for disease progression. In the top 5 tumoral antigens, we detected autoantibodies (IgM and IgG) against proteins related to cell homeostasis and metabolism in the studied cohort. The top 5 microbial antigens were associated with respiratory and gastrointestinal infections; moreover, the subsets with better prognostics were characterized by a reactivation of Cytomegalovirus. The viral humoral response could be a potential prognosis biomarker for disease progression.

2.
Exp Gerontol ; 171: 112040, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36455696

RESUMEN

Frailty is a complex physiological syndrome associated with adverse ageing and decreased physiological reserves. Frailty leads to cognitive and physical disability and is a significant cause of morbidity, mortality and economic costs. The underlying cause of frailty is multifaceted, including immunosenescence and inflammaging, changes in microbiota and metabolic dysfunction. Currently, salivary biomarkers are used as early predictors for some clinical diseases, contributing to the effective prevention and treatment of diseases, including frailty. Sample collection for salivary analysis is non-invasive and simple, which are paramount factors for testing in the vulnerable frail population. The aim of this review is to describe the current knowledge on the association between frailty and the inflammatory process and discuss methods to identify putative biomarkers in salivary fluids to predict this syndrome. This study describes the relationship between i.-inflammatory process and frailty; ii.-infectious, chronic, skeletal, metabolic and cognitive diseases with inflammation and frailty; iii.-inflammatory biomarkers and salivary fluids. There is a limited number of previous studies focusing on the analysis of inflammatory salivary biomarkers and frailty syndrome; hence, the study of salivary fluids as a source for biomarkers is an open area of research with the potential to address the increasing demands for frailty-associated biomarkers.


Asunto(s)
Fragilidad , Inmunosenescencia , Humanos , Anciano , Fragilidad/diagnóstico , Fragilidad/epidemiología , Anciano Frágil , Investigación Biomédica Traslacional , Biomarcadores , Inflamación
3.
Front Immunol ; 13: 965905, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248816

RESUMEN

Chronic lymphocytic leukemia (CLL) is a lymphoid neoplasm characterized by the accumulation of mature B cells. The diagnosis is established by the detection of monoclonal B lymphocytes in peripheral blood, even in early stages [monoclonal B-cell lymphocytosis (MBLhi)], and its clinical course is highly heterogeneous. In fact, there are well-characterized multiple prognostic factors that are also related to the observed genetic heterogenicity, such as immunoglobulin heavy chain variable region (IGHV) mutational status, del17p, and TP53 mutations, among others. Moreover, a dysregulation of the immune system (innate and adaptive immunity) has been observed in CLL patients, with strong impact on immune surveillance and consequently on the onset, evolution, and therapy response. In addition, the tumor microenvironment is highly complex and heterogeneous (i.e., matrix, fibroblast, endothelial cells, and immune cells), playing a critical role in the evolution of CLL. In this study, a quantitative profile of 103 proteins (cytokines, chemokines, growth/regulatory factors, immune checkpoints, and soluble receptors) in 67 serum samples (57 CLL and 10 MBLhi) has been systematically evaluated. Also, differential profiles of soluble immune factors that discriminate between MBLhi and CLL (sCD47, sCD27, sTIMD-4, sIL-2R, and sULBP-1), disease progression (sCD48, sCD27, sArginase-1, sLAG-3, IL-4, and sIL-2R), or among profiles correlated with other prognostic factors, such as IGHV mutational status (CXCL11/I-TAC, CXCL10/IP-10, sHEVM, and sLAG-3), were deciphered. These results pave the way to explore the role of soluble immune checkpoints as a promising source of biomarkers in CLL, to provide novel insights into the immune suppression process and/or dysfunction, mostly on T cells, in combination with cellular balance disruption and microenvironment polarization leading to tumor escape.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Biomarcadores , Quimiocina CXCL10 , Células Endoteliales/patología , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Factores Inmunológicos , Interleucina-4 , Microambiente Tumoral
4.
Proteomics Clin Appl ; 16(6): e2100100, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36168869

RESUMEN

PURPOSE: Acute phase reactants (APRs) play a critical role in inflammation. The difference in their physiological functions or the different dynamic ranges of these proteins in plasma makes it difficult to detect them simultaneously and to use several of these proteins as a tool in clinical practice. EXPERIMENTAL DESIGN: A novel multiplex assay has been designed and optimized to carry out a high-throughput and simultaneous screening of APRs, allowing the detection of each of them at the same time and in their corresponding dynamic range. RESULTS: Using Sars-CoV-2 infection as a model, it has been possible to profile different patterns of acute phase proteins that vary significantly between healthy and infected patients. In addition, severity profiles (acute respiratory distress syndrome and sepsis) have been established. CONCLUSIONS AND CLINICAL RELEVANCE: Differential profiles in acute phase proteins can serve as a diagnostic and prognostic tool, among patient stratification. The design of this new platform for their simultaneous detection paves the way for them to be more extensive use in clinical practice.


Asunto(s)
Proteínas de Fase Aguda , Reacción de Fase Aguda , COVID-19 , SARS-CoV-2 , Humanos , Proteínas de Fase Aguda/análisis , COVID-19/sangre , COVID-19/diagnóstico , Proteómica , Reacción de Fase Aguda/sangre , Reacción de Fase Aguda/diagnóstico , Reacción de Fase Aguda/virología
5.
J Nanobiotechnology ; 20(1): 341, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35858906

RESUMEN

BACKGROUND: Nowadays, nanoparticles (NPs) have evolved as multifunctional systems combining different custom anchorages which opens a wide range of applications in biomedical research. Thus, their pharmacological involvements require more comprehensive analysis and novel nanodrugs should be characterized by both chemically and biological point of view. Within the wide variety of biocompatible nanosystems, iron oxide nanoparticles (IONPs) present mostly of the required features which make them suitable for multifunctional NPs with many biopharmaceutical applications. RESULTS: Cisplatin-IONPs and different functionalization stages have been broadly evaluated. The potential application of these nanodrugs in onco-therapies has been assessed by studying in vitro biocompatibility (interactions with environment) by proteomics characterization the determination of protein corona in different proximal fluids (human plasma, rabbit plasma and fetal bovine serum),. Moreover, protein labeling and LC-MS/MS analysis provided more than 4000 proteins de novo synthetized as consequence of the nanodrugs presence defending cell signaling in different tumor cell types (data available via ProteomeXchanges with identified PXD026615). Further in vivo studies have provided a more integrative view of the biopharmaceutical perspectives of IONPs. CONCLUSIONS: Pharmacological proteomic profile different behavior between species and different affinity of protein coating layers (soft and hard corona). Also, intracellular signaling exposed differences between tumor cell lines studied. First approaches in animal model reveal the potential of theses NPs as drug delivery vehicles and confirm cisplatin compounds as strengthened antitumoral agents.


Asunto(s)
Productos Biológicos , Nanopartículas , Animales , Cromatografía Liquida , Cisplatino/farmacología , Humanos , Modelos Animales , Nanopartículas/química , Proteómica , Conejos , Albúmina Sérica Bovina , Espectrometría de Masas en Tándem
6.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743151

RESUMEN

In single-cell analysis, biological variability can be attributed to individual cells, their specific state, and the ability to respond to external stimuli, which are determined by protein abundance and their relative alterations. Mass spectrometry (MS)-based proteomics (e.g., SCoPE-MS and SCoPE2) can be used as a non-targeted method to detect molecules across hundreds of individual cells. To achieve high-throughput investigation, novel approaches in Single-Cell Proteomics (SCP) are needed to identify and quantify proteins as accurately as possible. Controlling sample preparation prior to LC-MS analysis is critical, as it influences sensitivity, robustness, and reproducibility. Several nanotechnological approaches have been developed for the removal of cellular debris, salts, and detergents, and to facilitate systematic sample processing at the nano- and microfluidic scale. In addition, nanotechnology has enabled high-throughput proteomics analysis, which have required the improvement of software tools, such as DART-ID or DO-MS, which are also fundamental for addressing key biological questions. Single-cell proteomics has many applications in nanomedicine and biomedical research, including advanced cancer immunotherapies or biomarker characterization, among others; and novel methods allow the quantification of more than a thousand proteins while analyzing hundreds of single cells.


Asunto(s)
Proteínas , Proteómica , Espectrometría de Masas/métodos , Nanotecnología , Proteómica/métodos , Reproducibilidad de los Resultados
7.
Front Immunol ; 13: 732197, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154090

RESUMEN

Acute respiratory distress syndrome (ARDS) is a severe pulmonary disease, which is one of the major complications in COVID-19 patients. Dysregulation of the immune system and imbalances in cytokine release and immune cell activation are involved in SARS-CoV-2 infection. Here, the inflammatory, antigen, and auto-immune profile of patients presenting COVID-19-associated severe ARDS has been analyzed using functional proteomics approaches. Both, innate and humoral responses have been characterized through acute-phase protein network and auto-antibody signature. Severity and sepsis by SARS-CoV-2 emerged to be correlated with auto-immune profiles of patients and define their clinical progression, which could provide novel perspectives in therapeutics development and biomarkers of COVID-19 patients. Humoral response in COVID-19 patients' profile separates with significant differences patients with or without ARDS. Furthermore, we found that this profile can be correlated with COVID-19 severity and results more common in elderly patients.


Asunto(s)
Autoantígenos/inmunología , Autoinmunidad/inmunología , COVID-19/inmunología , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/virología , Autoanticuerpos/inmunología , COVID-19/complicaciones , Humanos , SARS-CoV-2/inmunología
8.
Cancers (Basel) ; 14(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35053611

RESUMEN

In the present work, leptomeningeal disease, a very destructive form of systemic cancer, was characterized from several proteomics points of view. This pathology involves the invasion of the leptomeninges by malignant tumor cells. The tumor spreads to the central nervous system through the cerebrospinal fluid (CSF) and has a very grim prognosis; the average life expectancy of patients who suffer it does not exceed 3 months. The early diagnosis of leptomeningeal disease is a challenge because, in most of the cases, it is an asymptomatic pathology. When the symptoms are clear, the disease is already in the very advanced stages and life expectancy is low. Consequently, there is a pressing need to determine useful CSF proteins to help in the diagnosis and/or prognosis of this disease. For this purpose, a systematic and exhaustive proteomics characterization of CSF by multipronged proteomics approaches was performed to determine different protein profiles as potential biomarkers. Proteins such as PTPRC, SERPINC1, sCD44, sCD14, ANPEP, SPP1, FCGR1A, C9, sCD19, and sCD34, among others, and their functional analysis, reveals that most of them are linked to the pathology and are not detected on normal CSF. Finally, a panel of biomarkers was verified by a prediction model for leptomeningeal disease, showing new insights into the research for potential biomarkers that are easy to translate into the clinic for the diagnosis of this devastating disease.

9.
Lima; Perú. Colegio Médico del Perú. Fondo Editorial Comunicacional; 1 ed; Oct. 2021. 131 p. ilus.
Monografía en Español | MINSAPERÚ, LIPECS | ID: biblio-1363267

RESUMEN

La presente publicación consta de ocho capítulos, el primero sobre Generalidades de esta zoonosis, el segundo sobre Métodos de Estudio, el tercero sobre Equinococosis Quística Pulmonar, el cuarto sobre Equinococosis Quística Hepática, el quinto sobre Equinococosis Quística múltiple y diseminada, el sexto Equinococosis Quística de ubicación poco frecuente, el séptimo sobre tratamiento y el octavo sobre prevención y recomendaciones


Asunto(s)
Diagnóstico por Imagen , Zoonosis , Técnicas y Procedimientos Diagnósticos , Ranunculaceae , Equinococosis
10.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360795

RESUMEN

Specific anti-tumor immune responses have proven to be pivotal in shaping tumorigenesis and tumor progression in solid cancers. These responses can also be of an autoimmune nature, and autoantibodies can sometimes be present even before the onset of clinically overt disease. Autoantibodies can be generated due to mutated gene products, aberrant expression and post-transcriptional modification of proteins, a pro-immunogenic milieu, anti-cancer treatments, cross-reactivity of tumor-specific lymphocytes, epitope spreading, and microbiota-related and genetic factors. Understanding these responses has implications for both basic and clinical immunology. Autoantibodies in solid cancers can be used for early detection of cancer as well as for biomarkers of prognosis and treatment response. High-throughput techniques such as protein microarrays make parallel detection of multiple autoantibodies for increased specificity and sensitivity feasible, affordable, and quick. Cancer immunotherapy has revolutionized cancer treatments and has made a considerable impact on reducing cancer-associated morbidity and mortality. However, immunotherapeutic interventions such as immune checkpoint inhibition can induce immune-related toxicities, which can even be life-threatening. Uncovering the reasons for treatment-induced autoimmunity can lead to fine-tuning of cancer immunotherapy approaches to evade toxic events while inducing an effective anti-tumor immune response.


Asunto(s)
Autoanticuerpos/inmunología , Autoinmunidad/efectos de los fármacos , Biomarcadores de Tumor/inmunología , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia/efectos adversos , Neoplasias , Animales , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/inmunología , Neoplasias/terapia
11.
Cancers (Basel) ; 13(11)2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34198850

RESUMEN

Immunogenic cell death (ICD) elicited by cancer therapy reshapes the tumor immune microenvironment. A long-term adaptative immune response can be initiated by modulating cell death by therapeutic approaches. Here, the major hallmarks of ICD, endoplasmic reticulum (ER) stress, and damage-associated molecular patterns (DAMPs) are correlated with ICD inducers used in clinical practice to enhance antitumoral activity by suppressing tumor immune evasion. Approaches to monitoring the ICD triggered by antitumoral therapeutics in the tumor microenvironment (TME) and novel perspective in this immune system strategy are also reviewed to give an overview of the relevance of ICD in cancer treatment.

12.
Cancers (Basel) ; 13(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072782

RESUMEN

Sporadic Colorectal Cancer (sCRC) is the third leading cause of cancer death in the Western world, and the sCRC patients presenting with synchronic metastasis have the poorest prognosis. Genetic alterations accumulated in sCRC tumor cells translate into mutated proteins and/or abnormal protein expression levels, which contribute to the development of sCRC. Then, the tumor-associated proteins (TAAs) might induce the production of auto-antibodies (aAb) via humoral immune response. Here, Nucleic Acid Programmable Protein Arrays (NAPPArray) are employed to identify aAb in plasma samples from a set of 50 sCRC patients compared to seven healthy donors. Our goal was to establish a systematic workflow based on NAPPArray to define differential aAb profiles between healthy individuals and sCRC patients as well as between non-metastatic (n = 38) and metastatic (n = 12) sCRC, in order to gain insight into the role of the humoral immune system in controlling the development and progression of sCRC. Our results showed aAb profile based on 141 TAA including TAAs associated with biological cellular processes altered in genesis and progress of sCRC (e.g., FSCN1, VTI2 and RPS28) that discriminated healthy donors vs. sCRC patients. In addition, the potential capacity of discrimination (between non-metastatic vs. metastatic sCRC) of 7 TAAs (USP5, ML4, MARCKSL1, CKMT1B, HMOX2, VTI2, TP53) have been analyzed individually in an independent cohort of sCRC patients, where two of them (VTI2 and TP53) were validated (AUC ~75%). In turn, these findings provided novel insights into the immunome of sCRC, in combination with transcriptomics profiles and protein antigenicity characterizations, wich might lead to the identification of novel sCRC biomarkers that might be of clinical utility for early diagnosis of the tumor. These results explore the immunomic analysis as potent source for biomarkers with diagnostic and prognostic value in CRC. Additional prospective studies in larger series of patients are required to confirm the clinical utility of these novel sCRC immunomic biomarkers.

13.
Front Cell Infect Microbiol ; 11: 642583, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34123866

RESUMEN

Genetic variability across the three major histocompatibility complex (MHC) class I genes (human leukocyte antigen [HLA] A, B, and C) may affect susceptibility to many diseases such as cancer, auto-immune or infectious diseases. Individual genetic variation may help to explain different immune responses to microorganisms across a population. HLA typing can be fast and inexpensive; however, deciphering peptides loaded on MHC-I and II which are presented to T cells, require the design and development of high-sensitivity methodological approaches and subsequently databases. Hence, these novel strategies and databases could help in the generation of vaccines using these potential immunogenic peptides and in identifying high-risk HLA types to be prioritized for vaccination programs. Herein, the recent developments and approaches, in this field, focusing on the identification of immunogenic peptides have been reviewed and the next steps to promote their translation into biomedical and clinical practice are discussed.


Asunto(s)
Antígenos de Histocompatibilidad Clase II , Antígenos de Histocompatibilidad Clase I , Antígenos HLA , Humanos , Péptidos , Linfocitos T
14.
Sci Rep ; 11(1): 12306, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112903

RESUMEN

Chagas disease remains a major neglected disease in Colombia. We aimed to characterize Trypanosoma cruzi transmission networks in the Sierra Nevada de Santa Marta (SNSM) region, to shed light on disease ecology and help optimize control strategies. Triatomines were collected in rural communities and analyzed for blood feeding sources, parasite diversity and gut microbiota composition through a metagenomic and deep sequencing approach. Triatoma dimidiata predominated, followed by Rhodnius prolixus, Triatoma maculata, Rhodnius pallescens, Panstrongylus geniculatus and Eratyrus cuspidatus. Twenty-two species were identified as blood sources, resulting in an integrated transmission network with extensive connectivity among sylvatic and domestic host species. Only TcI parasites were detected, predominantly from TcIb but TcIa was also reported. The close relatedness of T. cruzi strains further supported the lack of separate transmission cycles according to habitats or triatomine species. Triatomine microbiota varied according to species, developmental stage and T. cruzi infection. Bacterial families correlated with the presence/absence of T. cruzi were identified. In conclusion, we identified a domestic transmission cycle encompassing multiple vector species and tightly connected with sylvatic hosts in the SNSM region, rather than an isolated domestic transmission cycle. Therefore, integrated interventions targeting all vector species and their contact with humans should be considered.


Asunto(s)
Microbioma Gastrointestinal/genética , Variación Genética , Triatoma/genética , Triatominae/genética , Animales , Enfermedad de Chagas/genética , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/patología , Genotipo , Humanos , Insectos Vectores/genética , Grupos de Población , Rhodnius/patogenicidad , Triatoma/clasificación , Triatominae/parasitología , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidad
15.
Methods Mol Biol ; 2344: 211-226, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34115362

RESUMEN

The heterogeneity of diseases such as cancer makes it necessary to use high-throughput screening techniques to obtain the maximum number of parameters and characteristics of tumors. These obtained biomarkers can be used for the prediction, prognosis, and treatment or search for new therapeutic targets. In this sense, microarray technology allows exhaustive analysis in a short time and from a great variety of biological samples, becoming a fundamental tool in biomedical research projects. Here, operational process of protein microarrays based on the antibody-antigen interaction is described, emphasizing their application in intracellular signaling pathways in tumoral pathologies. In addition, a final validation using nucleic acid programmable protein array (NAPPA) technology in a simple ELISA assay was included to decipher functional characterization of featured proteins from microarray screening.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Ensayos Analíticos de Alto Rendimiento , Proteínas de Neoplasias/análisis , Neoplasias/diagnóstico , Ácidos Nucleicos/análisis , Análisis por Matrices de Proteínas , Reacciones Antígeno-Anticuerpo , Humanos , Proteínas de Neoplasias/inmunología , Neoplasias/inmunología , Ácidos Nucleicos/inmunología , Transducción de Señal
16.
Front Immunol ; 12: 637832, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859640

RESUMEN

Human B-cell differentiation has been extensively investigated on genomic and transcriptomic grounds; however, no studies have accomplished so far detailed analysis of antigen-dependent maturation-associated human B-cell populations from a proteomic perspective. Here, we investigate for the first time the quantitative proteomic profiles of B-cells undergoing antigen-dependent maturation using a label-free LC-MS/MS approach applied on 5 purified B-cell subpopulations (naive, centroblasts, centrocytes, memory and plasma B-cells) from human tonsils (data are available via ProteomeXchange with identifier PXD006191). Our results revealed that the actual differences among these B-cell subpopulations are a combination of expression of a few maturation stage-specific proteins within each B-cell subset and maturation-associated changes in relative protein expression levels, which are related with metabolic regulation. The considerable overlap of the proteome of the 5 studied B-cell subsets strengthens the key role of the regulation of the stoichiometry of molecules associated with metabolic regulation and programming, among other signaling cascades (such as antigen recognition and presentation and cell survival) crucial for the transition between each B-cell maturation stage.


Asunto(s)
Antígenos/inmunología , Subgrupos de Linfocitos B/citología , Diferenciación Celular/inmunología , Regulación de la Expresión Génica/inmunología , Transducción de Señal/inmunología , Adolescente , Adulto , Células Cultivadas , Niño , Preescolar , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Centro Germinal/citología , Centro Germinal/inmunología , Humanos , Activación de Linfocitos/inmunología , Masculino , Tonsila Palatina/citología , Tonsila Palatina/inmunología , Proteoma/genética , Transcriptoma/genética , Adulto Joven
17.
Nanomaterials (Basel) ; 10(7)2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32610601

RESUMEN

The broad relationship between the immune system and cancer is opening a new hallmark to explore for nanomedicine. Here, all the common and synergy points between both areas are reviewed and described, and the recent approaches which show the progress from the bench to the beside to biomarkers developed in nanomedicine and onco-immunotherapy.

18.
Nanomaterials (Basel) ; 9(10)2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31554176

RESUMEN

Nanotechnology is a multidisciplinary science covering matters involving the nanoscale level that is being developed for a great variety of applications. Nanomedicine is one of these attractive and challenging uses focused on the employment of nanomaterials in medical applications such as drug delivery. However, handling these nanometric systems require defining specific parameters to establish the possible advantages and disadvantages in specific applications. This review presents the fundamental factors of nanoparticles and its microenvironment that must be considered to make an appropriate design for medical applications, mainly: (i) Interactions between nanoparticles and their biological environment, (ii) the interaction mechanisms, (iii) and the physicochemical properties of nanoparticles. On the other hand, the repercussions of the control, alter and modify these parameters in the biomedical applications. Additionally, we briefly report the implications of nanoparticles in nanomedicine and precision medicine, and provide perspectives in immunotherapy, which is opening novel applications as immune-oncology.

19.
Methods Mol Biol ; 1871: 107-122, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30276735

RESUMEN

High-density protein microarrays constitute a promising high-throughput platform for the characterization of protein expression patterns, biomarker discovery, and validation. Different types of protein microarrays have been described according to several features (such as content, format, and detection system) presenting advantages and disadvantages which are relevant for the specific application and purposes. Therefore, an experimental design is key for any screening based on protein microarrays assays; in fact, the data analysis strategy is directly related to the experimental design, type of protein microarray and consequently the final outcome, the data and results interpretation, is also directly linked. Here, it is proposed a systematic workflow for biomarker discovery based on tailor-made protein microarrays platforms which obtain comprehensively info for the functional protein characterization in high-throughput format.


Asunto(s)
Biomarcadores , Análisis por Matrices de Proteínas/métodos , Proteómica , Análisis de Datos , Proteómica/métodos , Flujo de Trabajo
20.
Arthritis Rheumatol ; 70(1): 115-126, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28940894

RESUMEN

OBJECTIVE: Transforming growth factor ß1 (TGFß1) is considered a key factor in fibrogenesis, and blocking TGFß1 signaling pathways diminishes fibrogenesis in animal models. The objective of this study was to determine whether nelfinavir mesylate (NFV), a drug approved by the Food and Drug Administration (FDA) for treating HIV infection, could be repurposed to treat pulmonary fibrosis in patients with systemic sclerosis (SSc). METHODS: Normal human lung, ventricular, and skin fibroblasts as well as lung fibroblasts from SSc patients were used to determine the effects of NFV on fibroblast-to-myofibroblast differentiation mediated by TGFß1. The efficacy of NFV was also evaluated in an animal model of SSc (bleomycin-induced pulmonary fibrosis). In addition, in silico analysis was performed to determine novel off-target effects of NFV. RESULTS: NFV inhibited TGFß1-mediated fibroblast-to-myofibroblast differentiation in lung fibroblasts through inhibition of the TGFß1 canonical pathway. NFV also inhibited differentiation of skin and ventricular fibroblasts and adipocyte precursors into myofibroblasts. Activation of the TGFß1/mechanistic target of rapamycin pathway inhibited autophagy in lung fibroblasts, favoring collagen deposition, and NFV counteracted this effect in a dose-dependent manner. Moreover, NFV significantly reduced lung injury and collagen deposition in an animal model of SSc. In silico analysis of NFV binding proteins revealed new putative beneficial mechanisms of action, consistent with known common pathways in fibrogenesis. CONCLUSION: NFV abrogates TGFß1-mediated fibroblast-to-myofibroblast differentiation and pulmonary fibrosis through off-target protein binding, a finding that supports consideration of this FDA-approved medication as an antifibrotic agent.


Asunto(s)
Antirretrovirales/farmacología , Diferenciación Celular/efectos de los fármacos , Nelfinavir/farmacología , Fibrosis Pulmonar/tratamiento farmacológico , Esclerodermia Sistémica/tratamiento farmacológico , Animales , Técnicas de Cultivo de Célula , Simulación por Computador , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Humanos , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/complicaciones , Esclerodermia Sistémica/complicaciones , Transducción de Señal/efectos de los fármacos , Piel/patología , Factor de Crecimiento Transformador beta1/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...