Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(3): 109152, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38384833

RESUMEN

HIV-1 latency results from tightly regulated molecular processes that act at distinct steps of HIV-1 gene expression. Here, we characterize PCI domain-containing 2 (PCID2) protein, a subunit of the transcription and export complex 2 (TREX2) complex, to enforce transcriptional repression and post-transcriptional blocks to HIV-1 gene expression during latency. PCID2 bound the latent HIV-1 LTR (long terminal repeat) and repressed transcription initiation during latency. Depletion of PCID2 remodeled the chromatin landscape at the HIV-1 promoter and resulted in transcriptional activation and latency reversal. Immunoprecipitation coupled to mass spectrometry identified PCID2-interacting proteins to include negative viral RNA (vRNA) splicing regulators, and PCID2 depletion resulted in over-splicing of intron-containing vRNA in cell lines and primary cells obtained from PWH. MCM3AP and DSS1, two other RNA-binding TREX2 complex subunits, also inhibit transcription initiation and vRNA alternative splicing during latency. Thus, PCID2 is a novel HIV-1 latency-promoting factor, which in context of the TREX2 sub-complex PCID2-DSS1-MCM3AP blocks transcription and dysregulates vRNA processing.

2.
Plant Physiol ; 193(4): 2306-2320, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37555432

RESUMEN

Compared with the ancestral C3 state, C4 photosynthesis occurs at higher rates with improved water and nitrogen use efficiencies. In both C3 and C4 plants, rates of photosynthesis increase with light intensity and are maximal around midday. We determined that in the absence of light or temperature fluctuations, photosynthesis in maize (Zea mays) peaks in the middle of the subjective photoperiod. To investigate the molecular processes associated with these temporal changes, we performed RNA sequencing of maize mesophyll and bundle sheath strands over a 24-h time course. Preferential expression of C4 cycle genes in these cell types was strongest between 6 and 10 h after dawn when rates of photosynthesis were highest. For the bundle sheath, DNA motif enrichment and gene coexpression analyses suggested members of the DNA binding with one finger (DOF) and MADS (MINICHROMOSOME MAINTENANCE FACTOR 1/AGAMOUS/DEFICIENS/Serum Response Factor)-domain transcription factor families mediate diurnal fluctuations in C4 gene expression, while trans-activation assays in planta confirmed their ability to activate promoter fragments from bundle sheath expressed genes. The work thus identifies transcriptional regulators and peaks in cell-specific C4 gene expression coincident with maximum rates of photosynthesis in the maize leaf at midday.


Asunto(s)
Fotosíntesis , Zea mays , Zea mays/genética , Zea mays/metabolismo , Fotosíntesis/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Expresión Génica
3.
Trends Plant Sci ; 28(6): 620-622, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36959045

RESUMEN

Biomolecular condensates are increasingly being recognized as a fundamental mechanism for the organization of the intracellular space. Powers et al. and Jing et al. have demonstrated that a cytoplasmic condensation of AUXIN RESPONSE FACTOR (ARF) transcription factors restrains auxin responses, acting as an additional regulatory layer in the auxin-mediated control of plant development.


Asunto(s)
Ácidos Indolacéticos , Factores de Transcripción , Factores de Transcripción/genética , Desarrollo de la Planta
5.
PLoS Med ; 19(10): e1003979, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36301821

RESUMEN

BACKGROUND: Vaccines can be less immunogenic in people living with HIV (PLWH), but for SARS-CoV-2 vaccinations this is unknown. In this study we set out to investigate, for the vaccines currently approved in the Netherlands, the immunogenicity and reactogenicity of SARS-CoV-2 vaccinations in PLWH. METHODS AND FINDINGS: We conducted a prospective cohort study to examine the immunogenicity of BNT162b2, mRNA-1273, ChAdOx1-S, and Ad26.COV2.S vaccines in adult PLWH without prior COVID-19, and compared to HIV-negative controls. The primary endpoint was the anti-spike SARS-CoV-2 IgG response after mRNA vaccination. Secondary endpoints included the serological response after vector vaccination, anti-SARS-CoV-2 T-cell response, and reactogenicity. Between 14 February and 7 September 2021, 1,154 PLWH (median age 53 [IQR 44-60] years, 85.5% male) and 440 controls (median age 43 [IQR 33-53] years, 28.6% male) were included in the final analysis. Of the PLWH, 884 received BNT162b2, 100 received mRNA-1273, 150 received ChAdOx1-S, and 20 received Ad26.COV2.S. In the group of PLWH, 99% were on antiretroviral therapy, 97.7% were virally suppressed, and the median CD4+ T-cell count was 710 cells/µL (IQR 520-913). Of the controls, 247 received mRNA-1273, 94 received BNT162b2, 26 received ChAdOx1-S, and 73 received Ad26.COV2.S. After mRNA vaccination, geometric mean antibody concentration was 1,418 BAU/mL in PLWH (95% CI 1322-1523), and after adjustment for age, sex, and vaccine type, HIV status remained associated with a decreased response (0.607, 95% CI 0.508-0.725, p < 0.001). All controls receiving an mRNA vaccine had an adequate response, defined as >300 BAU/mL, whilst in PLWH this response rate was 93.6%. In PLWH vaccinated with mRNA-based vaccines, higher antibody responses were predicted by CD4+ T-cell count 250-500 cells/µL (2.845, 95% CI 1.876-4.314, p < 0.001) or >500 cells/µL (2.936, 95% CI 1.961-4.394, p < 0.001), whilst a viral load > 50 copies/mL was associated with a reduced response (0.454, 95% CI 0.286-0.720, p = 0.001). Increased IFN-γ, CD4+ T-cell, and CD8+ T-cell responses were observed after stimulation with SARS-CoV-2 spike peptides in ELISpot and activation-induced marker assays, comparable to controls. Reactogenicity was generally mild, without vaccine-related serious adverse events. Due to the control of vaccine provision by the Dutch National Institute for Public Health and the Environment, there were some differences between vaccine groups in the age, sex, and CD4+ T-cell counts of recipients. CONCLUSIONS: After vaccination with BNT162b2 or mRNA-1273, anti-spike SARS-CoV-2 antibody levels were reduced in PLWH compared to HIV-negative controls. To reach and maintain the same serological responses as HIV-negative controls, additional vaccinations are probably required. TRIAL REGISTRATION: The trial was registered in the Netherlands Trial Register (NL9214). https://www.trialregister.nl/trial/9214.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Infecciones por VIH , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ad26COVS1 , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Infecciones por VIH/inmunología , Inmunogenicidad Vacunal , Inmunoglobulina G , Países Bajos/epidemiología , Estudios Prospectivos , ARN Mensajero , SARS-CoV-2 , Vacunas de ARNm
6.
Nucleic Acids Res ; 50(10): 5577-5598, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35640596

RESUMEN

A major pharmacological strategy toward HIV cure aims to reverse latency in infected cells as a first step leading to their elimination. While the unbiased identification of molecular targets physically associated with the latent HIV-1 provirus would be highly valuable to unravel the molecular determinants of HIV-1 transcriptional repression and latency reversal, due to technical limitations, this has been challenging. Here we use a dCas9 targeted chromatin and histone enrichment strategy coupled to mass spectrometry (Catchet-MS) to probe the differential protein composition of the latent and activated HIV-1 5'LTR. Catchet-MS identified known and novel latent 5'LTR-associated host factors. Among these, IKZF1 is a novel HIV-1 transcriptional repressor, required for Polycomb Repressive Complex 2 recruitment to the LTR. We find the clinically advanced thalidomide analogue iberdomide, and the FDA approved analogues lenalidomide and pomalidomide, to be novel LRAs. We demonstrate that, by targeting IKZF1 for degradation, these compounds reverse HIV-1 latency in CD4+ T-cells isolated from virally suppressed people living with HIV-1 and that they are able to synergize with other known LRAs.


Asunto(s)
Infecciones por VIH , VIH-1 , Linfocitos T CD4-Positivos/metabolismo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , VIH-1/genética , Humanos , Factor de Transcripción Ikaros/genética , Provirus/genética , Talidomida/metabolismo , Talidomida/farmacología , Factores de Transcripción/metabolismo , Activación Viral , Latencia del Virus
7.
Nat Commun ; 12(1): 2475, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33931637

RESUMEN

An innovative approach to eliminate HIV-1-infected cells emerging out of latency, the major hurdle to HIV-1 cure, is to pharmacologically reactivate viral expression and concomitantly trigger intracellular pro-apoptotic pathways in order to selectively induce cell death (ICD) of infected cells, without reliance on the extracellular immune system. In this work, we demonstrate the effect of DDX3 inhibitors on selectively inducing cell death in latent HIV-1-infected cell lines, primary CD4+ T cells and in CD4+ T cells from cART-suppressed people living with HIV-1 (PLWHIV). We used single-cell FISH-Flow technology to characterise the contribution of viral RNA to inducing cell death. The pharmacological targeting of DDX3 induced HIV-1 RNA expression, resulting in phosphorylation of IRF3 and upregulation of IFNß. DDX3 inhibition also resulted in the downregulation of BIRC5, critical to cell survival during HIV-1 infection, and selectively induced apoptosis in viral RNA-expressing CD4+ T cells but not bystander cells. DDX3 inhibitor treatment of CD4+ T cells from PLWHIV resulted in an approximately 50% reduction of the inducible latent HIV-1 reservoir by quantitation of HIV-1 RNA, by FISH-Flow, RT-qPCR and TILDA. This study provides proof of concept for pharmacological reversal of latency coupled to induction of apoptosis towards the elimination of the inducible reservoir.


Asunto(s)
Apoptosis/efectos de los fármacos , Azepinas/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , ARN Helicasas DEAD-box/metabolismo , Infecciones por VIH/inmunología , VIH-1/metabolismo , Imidazoles/farmacología , Latencia del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Antirretrovirales/farmacología , Apoptosis/genética , Azepinas/química , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , ARN Helicasas DEAD-box/antagonistas & inhibidores , ARN Helicasas DEAD-box/química , Inhibidores Enzimáticos/farmacología , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/genética , Humanos , Imidazoles/química , Hibridación Fluorescente in Situ , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Células Jurkat , Simulación del Acoplamiento Molecular , ARN Viral/metabolismo , Análisis de la Célula Individual , Survivin/metabolismo , Activación Viral/efectos de los fármacos , Replicación Viral/genética
8.
Front Plant Sci ; 12: 559967, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897718

RESUMEN

Spatial separation of the photosynthetic reactions is a key feature of C4 metabolism. In most C4 plants, this separation requires compartmentation of photosynthetic enzymes between mesophyll (M) and bundle sheath (BS) cells. The upstream region of the gene encoding the maize PHOSPHOENOLPYRUVATE CARBOXYLASE 1 (ZmPEPC1) has been shown sufficient to drive M-specific ZmPEPC1 gene expression. Although this region has been well characterized, to date, only few trans-factors involved in the ZmPEPC1 gene regulation were identified. Here, using a yeast one-hybrid approach, we have identified three novel maize transcription factors ZmHB87, ZmCPP8, and ZmOrphan94 as binding to the ZmPEPC1 upstream region. Bimolecular fluorescence complementation assays in maize M protoplasts unveiled that ZmOrphan94 forms homodimers and interacts with ZmCPP8 and with two other ZmPEPC1 regulators previously reported, ZmbHLH80 and ZmbHLH90. Trans-activation assays in maize M protoplasts unveiled that ZmHB87 does not have a clear transcriptional activity, whereas ZmCPP8 and ZmOrphan94 act as activator and repressor, respectively. Moreover, we observed that ZmOrphan94 reduces the trans-activation activity of both activators ZmCPP8 and ZmbHLH90. Using the electromobility shift assay, we showed that ZmOrphan94 binds to several cis-elements present in the ZmPEPC1 upstream region and one of these cis-elements overlaps with the ZmbHLH90 binding site. Gene expression analysis revealed that ZmOrphan94 is preferentially expressed in the BS cells, suggesting that ZmOrphan94 is part of a transcriptional regulatory network downregulating ZmPEPC1 transcript level in the BS cells. Based on both this and our previous work, we propose a model underpinning the importance of a regulatory mechanism within BS cells that contributes to the M-specific ZmPEPC1 gene expression.

9.
Plant J ; 99(2): 270-285, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30900785

RESUMEN

Compartmentation of photosynthetic reactions between mesophyll and bundle sheath cells is a key feature of C4 photosynthesis and depends on the cell-specific accumulation of major C4 enzymes, such as phosphoenolpyruvate carboxylase 1. The ZmPEPC1 upstream region, which drives light-inducible and mesophyll-specific gene expression in maize, has been shown to keep the same properties when introduced into rice (C3 plant), indicating that rice has the transcription factors (TFs) needed to confer C4 -like gene expression. Using a yeast one-hybrid approach, we identified OsbHLH112, a rice basic Helix-Loop-Helix (bHLH) TF that interacts with the maize ZmPEPC1 upstream region. Moreover, we found that maize OsbHLH112 homologues, ZmbHLH80, and ZmbHLH90, also interact with the ZmPEPC1 upstream region, suggesting that these C4 regulators were co-opted from C3 plants. A transactivation assay in maize mesophyll protoplasts revealed that ZmbHLH80 represses, whereas ZmbHLH90 activates, ZmPEPC1 expression. In addition, ZmbHLH80 was shown to impair the ZmPEPC1 promoter activation caused by ZmbHLH90. We showed that ZmbHLH80 and ZmbHLH90 bind to the same cis-element within the ZmPEPC1 upstream region either as homodimers or heterodimers. The formation of homo- and heterodimers with higher oligomeric forms promoted by ZmbHLH80 may explain its negative effect on gene transcription. Gene expression analysis revealed that ZmbHLH80 is preferentially expressed in bundle sheath cells, whereas ZmbHLH90 does not show a clear cell-specific expression pattern. Altogether, our results led us to propose a model in which ZmbHLH80 contributes to mesophyll-specific ZmPEPC1 gene expression by impairing ZmbHLH90-mediated ZmPEPC1 activation in the bundle sheath cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Proteínas de Plantas/fisiología , Zea mays/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Sonda Molecular , Oryza/genética , Fotosíntesis/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Zea mays/metabolismo
10.
Mol Biol Evol ; 35(7): 1690-1705, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29659975

RESUMEN

C4 photosynthesis has evolved repeatedly from the ancestral C3 state to generate a carbon concentrating mechanism that increases photosynthetic efficiency. This specialized form of photosynthesis is particularly common in the PACMAD clade of grasses, and is used by many of the world's most productive crops. The C4 cycle is accomplished through cell-type-specific accumulation of enzymes but cis-elements and transcription factors controlling C4 photosynthesis remain largely unknown. Using the NADP-Malic Enzyme (NADP-ME) gene as a model we tested whether mechanisms impacting on transcription in C4 plants evolved from ancestral components found in C3 species. Two basic Helix-Loop-Helix (bHLH) transcription factors, ZmbHLH128 and ZmbHLH129, were shown to bind the C4NADP-ME promoter from maize. These proteins form heterodimers and ZmbHLH129 impairs trans-activation by ZmbHLH128. Electrophoretic mobility shift assays indicate that a pair of cis-elements separated by a seven base pair spacer synergistically bind either ZmbHLH128 or ZmbHLH129. This pair of cis-elements is found in both C3 and C4 Panicoid grass species of the PACMAD clade. Our analysis is consistent with this cis-element pair originating from a single motif present in the ancestral C3 state. We conclude that C4 photosynthesis has co-opted an ancient C3 regulatory code built on G-box recognition by bHLH to regulate the NADP-ME gene. More broadly, our findings also contribute to the understanding of gene regulatory networks controlling C4 photosynthesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Malato Deshidrogenasa/genética , Zea mays/metabolismo , Fotosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Zea mays/genética
11.
Mol Plant ; 7(6): 960-976, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24637173

RESUMEN

Ethylene plays a crucial role in various biological processes and therefore its biosynthesis is strictly regulated by multiple mechanisms. Posttranslational regulation, which is pivotal in controlling ethylene biosynthesis, impacts 1-aminocyclopropane 1-carboxylate synthase (ACS) protein stability via the complex interplay of specific factors. Here, we show that the Arabidopsis thaliana protein phosphatase type 2C, ABI1, a negative regulator of abscisic acid signaling, is involved in the regulation of ethylene biosynthesis under oxidative stress conditions. We found that ABI1 interacts with ACS6 and dephosphorylates its C-terminal fragment, a target of the stress-responsive mitogen-activated protein kinase, MPK6. In addition, ABI1 controls MPK6 activity directly and by this means also affects the ACS6 phosphorylation level. Consistently with this, ozone-induced ethylene production was significantly higher in an ABI1 knockout strain (abi1td) than in wild-type plants. Importantly, an increase in stress-induced ethylene production in the abi1td mutant was compensated by a higher ascorbate redox state and elevated antioxidant activities. Overall, the results of this study provide evidence that ABI1 restricts ethylene synthesis by affecting the activity of ACS6. The ABI1 contribution to stress phenotype underpins its role in the interplay between the abscisic acid (ABA) and ethylene signaling pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Etilenos/biosíntesis , Liasas/metabolismo , Ozono , Fosfoproteínas Fosfatasas/metabolismo , Arabidopsis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Unión Proteica , Proteína Fosfatasa 2C , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...