Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 6(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36849252

RESUMEN

The leukotriene (LT) pathway is positively correlated with the progression of solid malignancies, but the factors that control the expression of 5-lipoxygenase (5-LO), the central enzyme in LT biosynthesis, in tumors are poorly understood. Here, we report that 5-LO along with other members of the LT pathway is up-regulated in multicellular colon tumor spheroids. This up-regulation was inversely correlated with cell proliferation and activation of PI3K/mTORC-2- and MEK-1/ERK-dependent pathways. Furthermore, we found that E2F1 and its target gene MYBL2 were involved in the repression of 5-LO during cell proliferation. Importantly, we found that this PI3K/mTORC-2- and MEK-1/ERK-dependent suppression of 5-LO is also existent in tumor cells from other origins, suggesting that this mechanism is widely applicable to other tumor entities. Our data show that tumor cells fine-tune 5-LO and LT biosynthesis in response to environmental changes repressing the enzyme during proliferation while making use of the enzyme under cell stress conditions, implying that tumor-derived 5-LO plays a role in the manipulation of the tumor stroma to quickly restore cell proliferation.


Asunto(s)
Araquidonato 5-Lipooxigenasa , Neoplasias del Colon , Humanos , Araquidonato 5-Lipooxigenasa/genética , Metabolismo de los Lípidos , Diana Mecanicista del Complejo 2 de la Rapamicina , Fosfatidilinositol 3-Quinasas
2.
Cancer Gene Ther ; 30(1): 108-123, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36114329

RESUMEN

5-Lipoxygenase (5-LO), the central enzyme in the biosynthesis of leukotrienes, is frequently expressed in human solid malignancies even though the enzyme is not present in the corresponding healthy tissues. There is little knowledge on the consequences of this expression for the tumor cells regarding gene expression and cellular function. We established a knockout (KO) of 5-LO in different cancer cell lines (HCT-116, HT-29, U-2 OS) and studied the consequences on global gene expression using next generation sequencing. Furthermore, cell viability, proliferation, migration and multicellular tumor spheroid (MCTS) formation were studied in these cells. Our results show that 5-LO influences the gene expression and cancer cell function in a cell type-dependent manner. The enzyme affected genes involved in cell adhesion, extracellular matrix formation, G protein signaling and cytoskeleton organization. Furthermore, absence of 5-LO elevated TGFß2 expression in HCT-116 cells while MCP-1, fractalkine and platelet-derived growth factor expression was attenuated in U-2 OS cells suggesting that tumor cell-derived 5-LO shapes the tumor microenvironment. In line with the gene expression data, KO of 5-LO had an impact on cell proliferation, motility and MCTS formation. Interestingly, pharmacological inhibition of 5-LO only partly mimicked the KO suggesting that also noncanonical functions are involved.


Asunto(s)
Araquidonato 5-Lipooxigenasa , Neoplasias , Humanos , Araquidonato 5-Lipooxigenasa/genética , Araquidonato 5-Lipooxigenasa/metabolismo , Línea Celular , Transducción de Señal , Neoplasias/genética , Expresión Génica , Araquidonato 15-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/metabolismo , Microambiente Tumoral
3.
Biochem Pharmacol ; 203: 115187, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35878796

RESUMEN

Human 5-lipoxygenase (5-LO) is the key enzyme of leukotriene biosynthesis, mostly expressed in leukocytes and thus a crucial component of the innate immune system. In this study, we show that 5-LO, besides its canonical function as an arachidonic acid metabolizing enzyme, is a regulator of gene expression associated with euchromatin. By Crispr-Cas9-mediated 5-LO knockout (KO) in MonoMac6 (MM6) cells and subsequent RNA-Seq analysis, we identified 5-LO regulated genes which could be clustered to immune/defense response, cell adhesion, transcription and growth/developmental processes. Analysis of differentially expressed genes identified cyclooxygenase-2 (COX2, PTGS2) and kynureninase (KYNU) as strongly regulated 5-LO target genes. 5-LO knockout affected MM6 cell adhesion and tryptophan metabolism via inhibition of the degradation of the immunoregulator kynurenine. By subsequent FAIRE-Seq and 5-LO ChIP-Seq analyses, we found an association of 5-LO with euchromatin, with prominent 5-LO binding to promoter regions in actively transcribed genes. By enrichment analysis of the ChIP-Seq results, we identified potential 5-LO interaction partners. Furthermore, 5-LO ChIP-Seq peaks resemble patterns of H3K27ac histone marks, suggesting that 5-LO recruitment mainly takes place at acetylated histones. In summary, we demonstrate a noncanonical function of 5-LO as transcriptional regulator in monocytic cells.


Asunto(s)
Araquidonato 5-Lipooxigenasa , Eucromatina , Araquidonato 15-Lipooxigenasa/genética , Araquidonato 5-Lipooxigenasa/genética , Araquidonato 5-Lipooxigenasa/metabolismo , Eucromatina/genética , Histonas/metabolismo , Humanos , Metabolismo de los Lípidos , Lipooxigenasa/genética , Lipooxigenasa/metabolismo
4.
J Med Chem ; 64(23): 17259-17276, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34818007

RESUMEN

Polypharmaceutical regimens often impair treatment of patients with metabolic syndrome (MetS), a complex disease cluster, including obesity, hypertension, heart disease, and type II diabetes. Simultaneous targeting of soluble epoxide hydrolase (sEH) and peroxisome proliferator-activated receptor γ (PPARγ) synergistically counteracted MetS in various in vivo models, and dual sEH inhibitors/PPARγ agonists hold great potential to reduce the problems associated with polypharmacy in the context of MetS. However, full activation of PPARγ leads to fluid retention associated with edema and weight gain, while partial PPARγ agonists do not have these drawbacks. In this study, we designed a dual partial PPARγ agonist/sEH inhibitor using a structure-guided approach. Exhaustive structure-activity relationship studies lead to the successful optimization of the designed lead. Crystal structures of one representative compound with both targets revealed potential points for optimization. The optimized compounds exhibited favorable metabolic stability, toxicity, selectivity, and desirable activity in adipocytes and macrophages.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , PPAR gamma/agonistas , Animales , Cristalografía por Rayos X , Células HEK293 , Humanos , Ratones , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Polifarmacia , Ratas , Relación Estructura-Actividad
5.
Front Pharmacol ; 12: 782584, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126121

RESUMEN

5-Lipoxygenase (5-LO) is the key enzyme in the formation of pro-inflammatory leukotrienes (LT) which play an important role in a number of inflammatory diseases. Accordingly, 5-LO inhibitors are frequently used to study the role of 5-LO and LT in models of inflammation and cancer. Interestingly, the therapeutic efficacy of these inhibitors is highly variable. Here we show that the frequently used 5-LO inhibitors AA-861, BWA4C, C06, CJ-13,610 and the FDA approved compound zileuton as well as the pan-LO inhibitor nordihydroguaiaretic acid interfere with prostaglandin E2 (PGE2) release into the supernatants of cytokine-stimulated (TNFα/IL-1ß) HeLa cervix carcinoma, A549 lung cancer as well as HCA-7 colon carcinoma cells with similar potencies compared to their LT inhibitory activities (IC50 values ranging from 0.1-9.1 µM). In addition, AA-861, BWA4C, CJ-13,610 and zileuton concentration-dependently inhibited bacterial lipopolysaccharide triggered prostaglandin (PG) release into human whole blood. Western Blot analysis revealed that inhibition of expression of enzymes involved in PG synthesis was not part of the underlying mechanism. Also, liberation of arachidonic acid which is the substrate for PG synthesis as well as PGH2 and PGE2 formation were not impaired by the compounds. However, accumulation of intracellular PGE2 was found in the inhibitor treated HeLa cells suggesting inhibition of PG export as major mechanism. Further, experiments showed that the PG exporter ATP-binding cassette transporter multidrug resistance protein 4 (MRP-4) is targeted by the inhibitors and may be involved in the 5-LO inhibitor-mediated PGE2 inhibition. In conclusion, the pharmacological effects of a number of 5-LO inhibitors are compound-specific and involve the potent inhibition of PGE2 export. Results from experimental models on the role of 5-LO in inflammation and pain using 5-LO inhibitors may be misleading and their use as pharmacological tools in experimental models has to be revisited. In addition, 5-LO inhibitors may serve as new scaffolds for the development of potent prostaglandin export inhibitors.

6.
J Med Chem ; 63(23): 14680-14699, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33216538

RESUMEN

Accessibility of the human genome is modulated by the ATP-driven SWI/SNF chromatin remodeling multiprotein complexes BAF (BRG1/BRM-associated factor) and PBAF (polybromo-associated BAF factor), which involves reading of acetylated histone tails by the bromodomain-containing proteins SMARCA2 (BRM), SMARCA4 (BRG1), and polybromo-1. Dysregulation of chromatin remodeling leads to aberrant cell proliferation and differentiation. Here, we have characterized a set of potent and cell-active bromodomain inhibitors with pan-selectivity for canonical family VIII bromodomains. Targeted SWI/SNF bromodomain inhibition blocked the expression of key genes during adipogenesis, including the transcription factors PPARγ and C/EBPα, and impaired the differentiation of 3T3-L1 murine fibroblasts into adipocytes. Our data highlight the role of SWI/SNF bromodomains in adipogenesis and provide a framework for the development of SWI/SNF bromodomain inhibitors for indirect targeting of key transcription factors regulating cell differentiation.


Asunto(s)
Adipogénesis/efectos de los fármacos , Proteínas de Unión al ADN/antagonistas & inhibidores , Dominios Proteicos/efectos de los fármacos , Piridazinas/farmacología , Factores de Transcripción/antagonistas & inhibidores , Células 3T3-L1 , Secuencia de Aminoácidos , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Ratones , Piridazinas/síntesis química
7.
Front Pharmacol ; 10: 263, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949053

RESUMEN

Cysteinyl leukotriene receptor 1 antagonists (CysLT1RA) are frequently used as add-on medication for the treatment of asthma. Recently, these compounds have shown protective effects in cardiovascular diseases. This prompted us to investigate their influence on soluble epoxide hydrolase (sEH) and peroxisome proliferator activated receptor (PPAR) activities, two targets known to play an important role in CVD and the metabolic syndrome. Montelukast, pranlukast and zafirlukast inhibited human sEH with IC50 values of 1.9, 14.1, and 0.8 µM, respectively. In contrast, only montelukast and zafirlukast activated PPARγ in the reporter gene assay with EC50 values of 1.17 µM (21.9% max. activation) and 2.49 µM (148% max. activation), respectively. PPARα and δ were not affected by any of the compounds. The activation of PPARγ was further investigated in 3T3-L1 adipocytes. Analysis of lipid accumulation, mRNA and protein expression of target genes as well as PPARγ phosphorylation revealed that montelukast was not able to induce adipocyte differentiation. In contrast, zafirlukast triggered moderate lipid accumulation compared to rosiglitazone and upregulated PPARγ target genes. In addition, we found that montelukast and zafirlukast display antagonistic activities concerning recruitment of the PPARγ cofactor CBP upon ligand binding suggesting that both compounds act as PPARγ modulators. In addition, zafirlukast impaired the TNFα triggered phosphorylation of PPARγ2 on serine 273. Thus, zafirlukast is a novel dual sEH/PPARγ modulator representing an excellent starting point for the further development of this compound class.

8.
J Med Chem ; 59(1): 61-81, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26595749

RESUMEN

Metabolic syndrome (MetS) is a multifactorial disease cluster that consists of dyslipidemia, cardiovascular disease, type 2 diabetes mellitus, and obesity. MetS patients are strongly exposed to polypharmacy; however, the number of pharmacological compounds required for MetS treatment can be reduced by the application of multitarget compounds. This study describes the design of dual-target ligands that target soluble epoxide hydrolase (sEH) and the peroxisome proliferator-activated receptor type γ (PPARγ). Simultaneous modulation of sEH and PPARγ can improve diabetic conditions and hypertension at once. N-Benzylbenzamide derivatives were determined to fit a merged sEH/PPARγ pharmacophore, and structure-activity relationship studies were performed on both targets, resulting in a submicromolar (sEH IC50 = 0.3 µM/PPARγ EC50 = 0.3 µM) modulator 14c. In vitro and in vivo evaluations revealed good ADME properties qualifying 14c as a pharmacological tool compound for long-term animal models of MetS.


Asunto(s)
Benzamidas/síntesis química , Benzamidas/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Síndrome Metabólico/tratamiento farmacológico , PPAR gamma/efectos de los fármacos , Células 3T3 , Administración Oral , Animales , Benzamidas/farmacocinética , Células COS , Chlorocebus aethiops , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/farmacocinética , Humanos , Hipertensión/tratamiento farmacológico , Técnicas In Vitro , Ratones , Microsomas Hepáticos/metabolismo , Ratas , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...