Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biochem Mol Toxicol ; 38(1): e23554, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37855258

RESUMEN

This work includes the synthesis of a new series of palladium-based complexes containing both morpholine and N-heterocyclic carbene (NHC) ligands. The new complexes were characterized using NMR (1 H and 13 C), FTIR spectroscopic, and elemental analysis techniques. The crystal structure of complex 1b was obtained by utilizing the single-crystal X-ray diffraction method. X-ray studies show that the coordination environment of palladium atom is completed by the carbene carbon atom of the NHC ligand, the nitrogen atom of the morpholine ring, and a pair of bromide ligand, resulting in the formation of slightly distorted square planar geometry. All complexes were determined for some metabolic enzyme activities. Results indicated that all the synthetic complexes exhibited powerful inhibitory actions against all aims as compared to the control molecules. Ki values of new morpholine-liganded complexes bearing 4-hydroxyphenylethyl group 1a-e for hCA I, hCA II, AChE, BChE, and α-glycosidase enzymes were obtained in the ranges 0.93-2.14, 1.01-2.03, 4.58-10.27, 7.02-13.75, and 73.86-102.65 µM, respectively. Designing of reported complexes is impacted by molecular docking study, and interaction with the current enzymes also proclaimed that compounds 1e (-12.25 kcal/mol for AChE and -11.63 kcal/mol for BChE), 1c (-10.77 kcal/mol and -9.26 kcal/mol for α-Gly and hCA II, respectively), and 1a (-8.31 kcal/mol for hCA I) are showing binding affinity and interaction from the synthesized five novel complexes.


Asunto(s)
Metano/análogos & derivados , Morfolinas , Paladio , Estructura Molecular , Simulación del Acoplamiento Molecular , Paladio/química , Ligandos , Morfolinas/farmacología
2.
Chem Biodivers ; 20(12): e202301362, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37953698

RESUMEN

This report presents the synthesis and characterization of a range of benzimidazolium salts featuring 3-cyanopropyl groups on the 1st nitrogen atom and varied alkyl groups on the 3rd nitrogen atom within the benzimidazole structure. Benzimidazolium salts were synthesized by N-alkylation of 1-alkyl benzimidazole with 3-cyanopropyl-bromide. The new salts were characterized by 1 H and 13 C-NMR, FT-IR spectroscopic and elemental analysis techniques. In this study, the enzyme inhibition abilities of seven nitrile substituted benzimidazolium salts were investigated against acetylcholinesterase (AChE) and carbonic anhydrase isoenzymes I and II (hCA I and hCA II). They showed a highly potent inhibition effect on AChE, hCA I and hCA II (Ki values are in the range of 26.71-119.09 nM for AChE, 19.77 to 133.68 nM for hCA I and 13.09 to 266.38 nM for hCA II). Reflecting the binding mode of the synthesized cyanopropyl series, the importance of the 2,3,5,6-tetramethylbenzyl, 3-methylbenzyl and 3-benzyl groups for optimal interactions with target proteins, evaluated by molecular docking studies. At the same time, the docking findings support the inhibition constants (Ki ) values of the related compounds in this study. Potential compounds were also evaluated by their pharmacokinetic properties were predicted.


Asunto(s)
Anhidrasas Carbónicas , Anhidrasas Carbónicas/metabolismo , Acetilcolinesterasa/metabolismo , Simulación del Acoplamiento Molecular , Sales (Química)/farmacología , Anhidrasa Carbónica II , Espectroscopía Infrarroja por Transformada de Fourier , Inhibidores de la Colinesterasa/química , Anhidrasa Carbónica I , Bencimidazoles , Nitrógeno , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Relación Estructura-Actividad , Estructura Molecular
3.
Curr Top Med Chem ; 23(25): 2416-2426, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37317917

RESUMEN

BACKGROUND: This work contains the synthesis of seven new N-heterocyclic compounds bearing imidazole, benzimidazole, pyridine, and morpholine moieties. OBJECTIVES: We aimed to synthesize N-heterocyclic compounds for a more effective drug candidate to increase the amount of acetylcholine in synapses in Alzheimer's disease. All compounds were characterized by 1H NMR, 13C NMR, FTIR and elemental analysis. Enzyme inhibition activity of all compounds against acetylcholinesterase was investigated, which is an indirect treatment for Alzheimer's. Molecular docking was applied to estimate the binding energy of these compounds to the acetylcholinesterase. METHODS: All compounds were synthesized from reactions of 2 equivalents of N-heterocyclic starting material and 1 equivalent of 4,4'-bis(chloromethyl)-1,1'-biphenyl. The inhibition parameters of IC50 and Ki were calculated by the spectrophotometric method. AutoDock4 was used to define the binding pose of the compounds. RESULTS: Ki values were found in the range of 80.03 ± 19.64 to 5014.98 ± 1139.60 nM for AChE as an enzyme inhibition strategy, which is an important parameter for the treatment of neurodegenerative such as Alzheimer's disease. In this study, molecular docking is exerted to predict the binding energy of heterocyclic compounds (especially 2, 3, and 5) against acetylcholinesterase enzyme. Their docking binding energies are in good agreement with experimental findings. CONCLUSION: These new syntheses are drugs that can be used as AChE inhibitors in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Compuestos Heterocíclicos , Humanos , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/uso terapéutico , Relación Estructura-Actividad , Estructura Molecular
4.
Bioorg Chem ; 135: 106513, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37030104

RESUMEN

This work contains synthesis, characterization, crystal structure, and biological activity of a new series of the PEPPSI type Pd(II)NHC complexes [(NHC)Pd(II)(3-Cl-py)]. NMR, FTIR, and elemental analysis techniques were used to characterize all (NHC)Pd(II)(3-Cl-py) complexes. Also, molecular and crystal structures of complex 1c were established by single-crystal X-ray diffraction. Regarding the X-ray studies, the palladium(II) atom has a slightly distorted square-planar coordination environment. Additionally, the enzyme inhibitory effect of new (NHC)Pd(II)(3-Cl-py) complexes (1a-1g) was studied. They exhibited highly potent inhibition effect on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carbonic anhydrases (hCAs) (Ki values are in the range of 0.08 ± 0.01 to 0.65 ± 0.06 µM, 10.43 ± 0.98 to 22.48 ± 2.01 µM, 6.58 ± 0.30 to 10.88 ± 1.01 µM and 6.34 ± 0.37 to 9.02 ± 0.72 µM for AChE, BChE, hCA I, and hCA II, respectively). Based on the molecular docking, among the seven synthesized complexes, 1c, 1b, 1e, and 1a significantly inhibited AChE, BChE, hCA I, and hCA II enzymes, respectively. The findings highpoint that (NHC)Pd(II)(3-Cl-py) complexes can be considered as possible inhibitors via metabolic enzyme inhibition.


Asunto(s)
Butirilcolinesterasa , Anhidrasas Carbónicas , Butirilcolinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Anhidrasas Carbónicas/metabolismo , Estructura Molecular , Inhibidores de Anhidrasa Carbónica/química , Relación Estructura-Actividad
5.
J Biomol Struct Dyn ; 41(21): 11728-11747, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36622368

RESUMEN

Herein, eight new NHC-based selenourea derivatives were synthesized and characterized by using spectroscopic method (1H, 19F, and 13C NMR, FT-IR), and elemental analysis techniques. These compounds were synthesized by mixing benzimidazolium salts, potassium carbonate, and selenium powder in ethyl alcohol. Additionally, the molecular and crystal structures of the three compounds (1c, 2b, and 2c) were determined using the single-crystal x-ray diffraction (XRD) method. Diffraction analysis demonstrated the partial carbon-selenium double-bond character of these compounds. All compounds were determined to be highly potent inhibitors for AChE and XO enzymes. The IC50 values for the compounds were found in the range of 0.361-0.754 µM for XO and from 0.995 to 1.746 µM for AChE. The DNA binding properties of the compounds were investigated. These compounds did not have a remarkable DNA binding property. Also, DPPH radical scavenging activities of the compounds were also investigated. Compounds (1c), (2a), (3a), and (3b) exhibited more pronounced DPPH radical scavenging activity when compared to other compounds. Docking studies were applied by using AutoDock 4 to determine interaction mechanism of the selected compounds (1a), (1b), and (3b). The compound (1b) has good binding affinity (-9.78 kcal/mol) against AChE, and (-6.86 kcal/mol) for XO target. Drug similarity properties of these compounds compared to positive controls were estimated and evaluated by ADMET analysis. Furthermore, molecular dynamics simulations have been applied to understand the accuracy of docking studies. These findings and the defined compounds could be potential candidates for the discovery and progress of effective medicine(s) for AChE and XO in the future.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Compuestos de Selenio , Selenio , Acetilcolinesterasa , Xantina Oxidasa , Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , ADN , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Estructura Molecular
6.
Mol Divers ; 27(6): 2767-2787, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36508118

RESUMEN

Herein, we present how to synthesize thirteen new 1-(4-acetylphenyl)-3-alkylimidazolium salts by reacting 4-(1-H-imidazol-1-yl)acetophenone with a variety of benzyl halides that contain either electron-donating or electron-withdrawing groups. The structures of the new imidazolium salts were conformed using different spectroscopic methods (1H NMR, 13C NMR, 19F NMR, and FTIR) and elemental analysis techniques. Furthermore, these compounds' the carbonic anhydrase (hCAs) and acetylcholinesterase (AChE) enzyme inhibition activities were investigated. They showed a highly potent inhibition effect toward AChE and hCAs with Ki values in the range of 8.30 ± 1.71 to 120.77 ± 8.61 nM for AChE, 16.97 ± 2.04 to 84.45 ± 13.78 nM for hCA I, and 14.09 ± 2.99 to 69.33 ± 17.35 nM for hCA II, respectively. Most of the synthesized imidazolium salts appeared to be more potent than the standard inhibitor of tacrine (TAC) against AChE and Acetazolamide (AZA) against CA. In the meantime, to prospect for potential synthesized imidazolium salt inhibitor(s) against AChE and hCAs, molecular docking and an ADMET-based approach were exerted.


Asunto(s)
Inhibidores de la Colinesterasa , Sales (Química) , Sales (Química)/farmacología , Inhibidores de la Colinesterasa/química , Acetilcolinesterasa/metabolismo , Anhidrasa Carbónica I/química , Anhidrasa Carbónica I/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Anhidrasa Carbónica II/química , Anhidrasa Carbónica II/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Estructura Molecular
7.
Chem Biodivers ; 19(12): e202200257, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36260838

RESUMEN

The method for producing 4-trifluoromethoxybenzyl substituted benzimidazolium salts is described in this article. The method is based on the reaction of 4-trifluoromethoxybenzyl substituent alkylating agent with 1-alkylbenzimidazole. This method yielded 1-(4-trifluoromethoxybenzyl)-3-alkylbenzimidazolium bromide salts. These benzimidazolium salts were characterized by using 1 H-NMR, 13 C-NMR, FT-IR spectroscopy, and elemental analysis techniques. The crystal structure of 1f was enlightened by single crystal X-ray diffraction studies. Also, the enzyme inhibition effects of the synthesised compounds were investigated. They demonstrated highly potent inhibition effect on acetylcholinesterase (AChE) and carbonic anhydrases (hCAs) (Ki values are in the range of 7.24±0.99 to 39.12±5.66 nM, 5.57±0.96 to 43.07±11.76 nM, and 4.38±0.43 to 18.68±3.60 nM for AChE, hCA I, and hCA II, respectively). In molecular docking study, the interactions of active compounds showing activity against AChE and hCAs enzymes were examined. The most active compound 1f has -10.90 kcal/mol binding energy value against AChE enzyme, and the potential structure compound 1e, which has activity against hCA I and hCA II enzymes, was -7.51 and -8.93 kcal/mol, respectively.


Asunto(s)
Bencimidazoles , Inhibidores de la Colinesterasa , Acetilcolinesterasa/metabolismo , Anhidrasa Carbónica I , Anhidrasa Carbónica II , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad , Bencimidazoles/química , Bencimidazoles/farmacología
8.
Heliyon ; 8(9): e10625, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36185151

RESUMEN

The palladium-based complexes bearing N-heterocyclic carbene (NHC) ligand have long attracted attention as active catalysts for many catalytic reactions. Recently, the biological activities of these complexes, which are stable to air and moisture, have also been wondered. With the aim, we report the synthesis of a series of (NHC)Pd(Br2)(L) complexes (NHC: 1,3-dibenzylbenzimidazolium, L: morpholine, triphenylphosphine, pyridine, 3-chloropyridine, and 2-aminopyridine). All complexes were characterized by NMR (1H and 13C), FTIR spectroscopic and elemental analysis techniques. In addition, the single crystal structures of the complex 3, 4, and 6 were determined through single crystal x-ray crystallographic method. Furthermore, the carbonic anhydrase I and II isoenzymes (hCAs) and acetylcholinesterase (AChE) inhibition effects of these palladium-based complexes bearing NHC ligand were investigated. They showed highly potent inhibition effect with Ki values are between 10.06 ± 1.49-68.56 ± 11.53 nM for hCA I isoenzyme, 7.74 ± 0.66 to 49.39 ± 6.50 nM for hCA II isoenzyme and 22.83 ± 3.21 to 64.09 ± 9.05 nM for AChE enzyme.

9.
Arch Pharm (Weinheim) ; 355(12): e2200276, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35986370

RESUMEN

Five 4-hydroxyphenylethyl substituted pyridine enhanced, precatalyst, preparation, stabilization, and initiation-Pd-N-heterocyclic carbene (PEPPSI-Pd-NHC) complexes are synthesized in a straightforward way. All PEPPSI-Pd-NHC complexes were prepared by mixing 4-hydroxyphenylethyl substituted NHC precursors, palladium chloride, potassium carbonate, and potassium bromide in pyridine. All complexes were screened for human carbonic anhydrase I (hCA I) and hCA II, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glucosidase (α-Glu) inhibitory activities. The ChE inhibitory activities of the new PEPPSI-Pd-NHC complexes bearing the 4-hydroxyphenylethyl group (1a-e) against α-Glu, AChE, and BChE were determined by the Tao and Ellman methods. The results indicated that all the synthetic complexes exhibited potent inhibitory activities against all targets as compared to the standard inhibitors, revealed by IC50 values. The Ki values of the new PEPPSI-Pd-NHC complexes 1a-e for hCA I, hCA II, AChE, BChE, and α-Glu were obtained in the ranges of 18.98-32.65, 22.95-38.13, 3.67-11.65, 4.09-9.36, 186.92-287.45 µM, respectively. Among the synthesized complexes, the most potent complexes were 1c toward hCA I and II with Ki values 18.98 and 22.95 µM, and 1d toward AChE and BChE with Ki = 3.67 and 4.09 µM, respectively.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Humanos , Butirilcolinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de la Colinesterasa/farmacología , Relación Estructura-Actividad , Anhidrasa Carbónica I , alfa-Glucosidasas , Piridinas , Estructura Molecular
10.
J Biochem Mol Toxicol ; 36(4): e23001, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35225413

RESUMEN

Here, we report the synthesis, characterization, and biological activities of a series of benzimidazolium salts bearing the trifluoromethylbenzyl group. All benzimidazolium salts were characterized by using nuclear magnetic resonance (NMR) (1 H NMR and 13 C NMR), Fourier transform-infrared spectroscopy, and elemental analysis techniques. The crystal structures of some of these compounds were obtained by the single-crystal X-ray diffraction method. Furthermore, the acetylcholinesterase (AChE) and α-glycosidase (α-Gly) enzyme inhibition activities of these compounds were investigated. The obtained results revealed that 2e, with Ki value of 1.36 ± 0.34 µM against AChE and 3d with Ki value of 91.37 ± 10.38 µM against α-Gly, were the most potent compounds against both assigned enzymes. It should be noted that most of the synthesized compounds were more potent than standard inhibitor tacrine (TAC) against AChE. In silico studies, we focused on compound 2e, 3d, 3e, and 3f as potent inhibitors of AChE and α-Gly, the compound 2e showed good binding energy (-10.23 kcal/mol), among the three selected compounds and positive control (-10.18, -10.08, and -7.37 kcal/mol for 3d, 3f, and TAC, respectively). Likewise, as a result of the same compounds against the α-Gly enzyme, the compound 3d had the highest binding affinity (-8.39 kcal/mol) between the four selected compounds and the positive control (-8.27, -8.10, -8.06, and -7.53 kcal/mol for 3f, 3e, 2e, and acarbose, respectively). From the absorption, distribution, metabolism, excretion, and toxicity analyses, it can be concluded that the compounds under consideration exhibited more drug-likeness properties in the prediction studies compared to positive controls.


Asunto(s)
Acetilcolinesterasa , Sales (Química) , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Sales (Química)/química , Sales (Química)/farmacología , Relación Estructura-Actividad
11.
Arch Pharm (Weinheim) ; 354(5): e2000422, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33427318

RESUMEN

Chloro-/fluorobenzyl-substituted benzimidazolium salts were synthesized from the reaction of 4-fluorobenzyl/2-chloro-4-fluorobenzyl-substituted benzimidazole and chlorinated aromatic hydrocarbons. They were characterized using various spectroscopic techniques (Fourier-transform infrared and nuclear magnetic resonance) and elemental analysis. In addition, the crystal structures of the complexes 1a -d and 2b were determined by single-crystal X-ray diffraction methods. These compounds were crystallized in the triclinic crystal system with a P-1 space group. The crystal packing of all complexes is dominated by O-H⋯Cl hydrogen bonds, which link the water molecules and chloride anions, forming a chloride-water tetrameric cluster. These synthesized salts were found to be effective inhibitors for α-glycosidase and acetylcholinesterase (AChE), with Ki values ranging from 45.77 ± 6.83 to 102.61 ± 11.56 µM for α-glycosidase and 0.94 ± 0.14 to 10.24 ± 1.58 µM for AChE. AChE converts acetylcholine into choline and acetic acid, thus causing the return of a cholinergic neuron to its resting state. Discovering AChE and α-glycosidase inhibitors is one of the important ways to develop new drugs for the treatment of Alzheimer's disease and diabetes.


Asunto(s)
Bencimidazoles/farmacología , Inhibidores de la Colinesterasa/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Acetilcolinesterasa/metabolismo , Bencimidazoles/síntesis química , Bencimidazoles/química , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Sales (Química)/síntesis química , Sales (Química)/química , Sales (Química)/farmacología , Relación Estructura-Actividad
12.
Bioorg Chem ; 95: 103552, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31911299

RESUMEN

In recent years, the preparation of metal complexes and the introduction of biologically active organometalic compounds are new strategies in drug development. For this purpose, generally N-heterocyclic pharmaceutical agents have been used as promising nuclei. Au-containing N-heterocyclic carbene (Au-NHC) derivatives are among the compounds used for this purpose, and their enzyme inhibition, antioxidant activity, antimicrobial and anticancer properties are widely studied. In these studies, the anticancer property of Au-NHC complexes is the most widely studied area. The common result in different studies has been revealed that mitochondrial thioredoxin reductases (TrxR) inhibition is the main pathway in the powerful anticancer effect of many Au-NHC complexes. In TrxR inhibition, the high affinity of gold to sulfur is considered to be the main component of the effect. This review includes the discussions releated to the anticancer activities and TrxR inhibition properties of Au-NHC compounds.


Asunto(s)
Antineoplásicos/farmacología , Oro/química , Compuestos Heterocíclicos/farmacología , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Antineoplásicos/química , Línea Celular Tumoral , Compuestos Heterocíclicos/química , Humanos
13.
Bioorg Chem ; 94: 103468, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31791684

RESUMEN

In this work, structures of different imidazolium compounds were designed and synthesized. These compounds were synthesized from 2-methylimidazole and alkyl/aryl halides. Their structures were characterized by using 1H NMR, 13C NMR, FTIR spectroscopic techniques. All the synthesized compounds were tested for their inhibition activities on different enzymes. Inhibition experiments gave good and moderate results, proving their activities of these compounds as anticholinergics potential. These obtained novel 2-methylimidazolium salts (1a-e and 2a-e) molecules were effective inhibitors of the carbonic anhydrase I and II isozymes (hCA I and II) and acetylcholinesterase (AChE) enzymes with Ki values in the range of 26.45 ± 6.49-77.60 ± 9.53 nM for hCA I, 27.87 ± 5.00-86.61 ± 5.71 nM for hCA II, and 1.15 ± 0.19-8.89 ± 0.49 nM for AChE, respectively. AChE enzyme inhibitors are the most common drugs applied in the therapy of diseases such as senile dementia, Alzheimer's disease, ataxia, Parkinson's disease, and among others.


Asunto(s)
Acetilcolinesterasa/metabolismo , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica I/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de la Colinesterasa/farmacología , Imidazoles/farmacología , Anhidrasa Carbónica I/metabolismo , Anhidrasa Carbónica II/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Humanos , Imidazoles/síntesis química , Imidazoles/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Sales (Química)/síntesis química , Sales (Química)/química , Sales (Química)/farmacología , Relación Estructura-Actividad
14.
Arch Pharm (Weinheim) ; 352(12): e1900187, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31583763

RESUMEN

A series of the morpholine-liganded palladium(II) complexes (1a-e) bearing N-heterocyclic carbene (NHC) functionalized by benzonitrile were synthesized. These complexes were synthesized from (NHC)Pd(II)(pyridine) complexes (PEPPSI) and morpholine. The new complexes were fully characterized by using 1 H NMR, 13 C NMR, Fourier-transform infrared spectroscopy, and elemental analysis techniques. Single-crystal X-ray diffraction was used to determine the structure of a derivative. The DNA-binding studies of the new (NHC)Pd(II)morpholine complexes were examined using the pBR322 plasmid. The 2,4,6-trimethylbenzyl derivative compound has the most DNA binding activity. In addition, for the 3-methylbenzyl derivative compound, oxidation effects were observed at concentrations higher than 100 µg/ml. Also, the molecular and crystal structures of the complex 3-methylbenzyl derivative compound were recorded by using a single-crystal X-ray diffraction method.


Asunto(s)
Complejos de Coordinación/síntesis química , Metano/análogos & derivados , Morfolinas/síntesis química , Paladio/química , Sitios de Unión , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cristalografía por Rayos X , ADN Circular/química , Ligandos , Metano/química , Morfolinas/química , Morfolinas/farmacología , Nitrilos/química , Plásmidos/química
15.
Bioorg Chem ; 91: 103134, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31374523

RESUMEN

In this work, the synthesis, crystal structure, characterization, and enzyme inhibition effects of the novel a series of 2-aminopyridine liganded Pd(II) N-heterocyclic carbene (NHC) complexes were examined. These complexes of the Pd-based were synthesized from PEPPSI complexes and 2-aminopyridine. The novel complexes were characterized by using 13C NMR, 1H NMR, elemental analysis, and FTIR spectroscopy techniques. Also, crystal structures of the two compounds were recorded by using single-crystal X-ray diffraction assay. Also, these complexes were tested toward some metabolic enzymes like α-glycosidase, aldose reductase, butyrylcholinesterase, acetylcholinesterase enzymes, and carbonic anhydrase I, and II isoforms. The novel 2-aminopyridine liganded (NHC)PdI2(2-aminopyridine) complexes (1a-i) showed Ki values of in range of 5.78 ±â€¯0.33-22.51 ±â€¯8.59 nM against hCA I, 13.77 ±â€¯2.21-30.81 ±â€¯4.87 nM against hCA II, 0.44 ±â€¯0.08-1.87 ±â€¯0.11 nM against AChE and 3.25 ±â€¯0.34-12.89 ±â€¯4.77 nM against BChE. Additionally, we studied the inhibition effect of these derivatives on aldose reductase and α-glycosidase enzymes. For these compounds, compound 1d showed maximum inhibition effect against AR with a Ki value of 360.37 ±â€¯55.82 nM. Finally, all compounds were tested for the inhibition of α-glycosidase enzyme, which recorded efficient inhibition profiles with Ki values in the range of 4.44 ±â€¯0.65-12.67 ±â€¯2.50 nM against α-glycosidase.


Asunto(s)
Aminopiridinas/química , Complejos de Coordinación/química , Inhibidores Enzimáticos/química , Aminopiridinas/síntesis química , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Pruebas de Enzimas , Inhibidores Enzimáticos/síntesis química , Humanos , Ligandos , Paladio/química
16.
Arch Pharm (Weinheim) ; 351(7): e1800029, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29963738

RESUMEN

meta-Cyanobenzyl-substituted N-heterocyclic carbene (NHC) precursors were synthesized by the reaction of a series of N-(alkyl)benzimidazolium with 3-bromomethyl-benzonitrile. These benzimidazolium salts were characterized by using 1 H NMR, 13 C NMR, FTIR spectroscopy, and elemental analysis techniques. The molecular and crystal structures of 2f and 2g complexes were obtained by using the single-crystal X-ray diffraction method. The derivatives of these novel NHC precursors were effective inhibitors of α-glycosidase (AG), the cytosolic carbonic anhydrase I and II isoforms (hCA I and II), butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) with Ki values in the range of 1.01-2.12 nM for AG, 189.56-402.44 nM for hCA I, 112.50-277.37 nM for hCA II, 95.45-352.58 nM for AChE, and 132.91-571.18 nM for BChE. In the last years, inhibition of the CA enzyme has been considered as a promising factor for pharmacologic intervention in a diversity of disturbances such as obesity, glaucoma, cancer, and epilepsy.


Asunto(s)
Butirilcolinesterasa/efectos de los fármacos , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de la Colinesterasa/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Bencimidazoles/síntesis química , Bencimidazoles/química , Bencimidazoles/farmacología , Compuestos de Bencilo/síntesis química , Compuestos de Bencilo/química , Compuestos de Bencilo/farmacología , Butirilcolinesterasa/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Cristalización , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Espectroscopía de Resonancia Magnética/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Relación Estructura-Actividad , Difracción de Rayos X
17.
Arch Pharm (Weinheim) ; 351(9): e1800146, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30033646

RESUMEN

Three series of symmetrical Schiff bases were synthesized from 1,2-diaminoethane, 1,3-diaminopropane and 1,4-diaminobutane and substituted benzaldehydes, and reduced by sodium borohydride to the corresponding benzylic diamines 4-6. All of the compounds obtained were characterized using elemental analysis, FT-IR, 1 H NMR, and 13 C NMR spectroscopy. The enzyme inhibitory properties of these compounds were tested and the influence of the alkane chain length and the substituents on the phenyl group on the enzyme inhibition activity were examined. The novel Schiff bases and their amine derivatives (1a-d, 2a-d, 3b-d, 4a-c, 5a-c, 6a, 6c, 6d) were effective inhibitors of the cytosolic carbonic anhydrase I and II isoforms (hCA I and II), and acetylcholinesterase (AChE) with Ki values in the range of 159.43 ± 30.03 to 563.73 ± 115.30 nM for hCA I, 104.88 ± 18.44 to 524.32 ± 95.03 nM for hCA II, and 3.95 ± 0.74 to 30.83 ± 6.81 nM for AChE.


Asunto(s)
Aminas/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de la Colinesterasa/farmacología , Descubrimiento de Drogas , Acetilcolinesterasa/metabolismo , Aminas/síntesis química , Aminas/química , Animales , Butirilcolinesterasa/metabolismo , Anhidrasa Carbónica I/antagonistas & inhibidores , Anhidrasa Carbónica I/aislamiento & purificación , Anhidrasa Carbónica I/metabolismo , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica II/aislamiento & purificación , Anhidrasa Carbónica II/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Órgano Eléctrico , Eritrocitos/enzimología , Caballos , Humanos , Estructura Molecular , Bases de Schiff/síntesis química , Bases de Schiff/química , Bases de Schiff/farmacología , Relación Estructura-Actividad
18.
J Biochem Mol Toxicol ; 32(1)2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29149534

RESUMEN

The novel N-propylphthalimide-substituted and 4-vinylbenzyl-substituted N-heterocyclic carbene (NHC) precursors were synthesized by N-substituted benzimidazolium with aryl halides. The novel N-propylphthalimide-substituted and 4-vinylbenzyl-substituted NHC precursors have been characterized by using 1 H NMR, 13 C NMR, FTIR spectroscopy, and elemental analysis techniques. They were tested for the inhibition of AChE and hCA enzymes and demonstrated efficient inhibition profiles with Ki values in the range of 351.0-1269.9 nM against hCA I, 346.6-1193.1 nM against hCA II, and 19.0-76.3 nM against AChE. On the other hand, acetazolamide, a clinically used molecule, utilized as CA inhibitor, obtained a Ki value of 1246.7 nM against hCA I and 1407.6 nM against hCA II. Additionally, tacrine inhibited AChE and obtained a Ki value of 174.6 nM.


Asunto(s)
Bencimidazoles/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de la Colinesterasa/farmacología , Diseño de Fármacos , Quelantes del Hierro/farmacología , Nootrópicos/farmacología , Ftalimidas/farmacología , Bencimidazoles/síntesis química , Bencimidazoles/química , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Humanos , Quelantes del Hierro/síntesis química , Quelantes del Hierro/química , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Cinética , Estructura Molecular , Nootrópicos/síntesis química , Nootrópicos/química , Ftalimidas/síntesis química , Ftalimidas/química , Relación Estructura-Actividad
19.
Arch Pharm (Weinheim) ; 350(6)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28464340

RESUMEN

Three series of imidazolidinium ligands (NHC precursors) substituted with 4-vinylbenzyl, 2-methyl-1,4-benzodioxane, and N-propylphthalimide were synthesized. N-Heterocyclic carbene (NHC) precursors were prepared from N-alkylimidazoline and alkyl halides. The novel NHC precursors were characterized by 1 H NMR, 13 C NMR, FTIR spectroscopy, and elemental analysis techniques. The enzymes inhibition activities of the NHC precursors were investigated against the cytosolic human carbonic anhydrase I and II isoenzymes (hCA I and II) and the acetylcholinesterase (AChE) enzyme. The inhibition parameters (IC50 and Ki values) were calculated by spectrophotometric method. The inhibition constants (Ki ) were found to be in the range of 166.65-635.38 nM for hCA I, 78.79-246.17 nM for hCA II, and 23.42-62.04 nM for AChE. Also, the inhibitory effects of the novel synthesized NHCs were compared to acetazolamide as a clinical CA isoenzymes inhibitor and tacrine as a clinical cholinergic enzymes inhibitor.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de la Colinesterasa/farmacología , Compuestos Heterocíclicos/farmacología , Imidazolidinas/farmacología , Metano/análogos & derivados , Acetilcolinesterasa/metabolismo , Anhidrasa Carbónica I/antagonistas & inhibidores , Anhidrasa Carbónica I/metabolismo , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica II/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/química , Humanos , Imidazolidinas/síntesis química , Imidazolidinas/química , Ligandos , Metano/síntesis química , Metano/química , Metano/farmacología , Estructura Molecular , Relación Estructura-Actividad
20.
J Enzyme Inhib Med Chem ; 31(6): 1527-30, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26987046

RESUMEN

This study reports the synthesis, characterisation and antimicrobial activity of five novel silver N-heterocyclic carbene (Ag-NHC) complexes obtained by N-propylphthalimide and N-methyldioxane substituted benzimidazolium salts with silver oxide. The reactions were performed at room temperature for 24 h in the absence of light. The obtained complexes were identified and characterised by (1)H and (13)C NMR, FT-IR and elemental analysis techniques. The minimum inhibitory concentration (MIC) of the complexes was determined for E. coli, P. aeruginosa, E. faecalis, S. aureus, C. tropicalis and C. albicans in vitro through agar and broth dilution. The results indicated that these complexes exhibit antimicrobial activity. In particular, complex 3 presented the significant broad spectrum antimicrobial activity.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Bencimidazoles/química , Metano/análogos & derivados , Plata/química , Antiinfecciosos/síntesis química , Espectroscopía de Resonancia Magnética con Carbono-13 , Metano/síntesis química , Metano/química , Metano/farmacología , Pruebas de Sensibilidad Microbiana , Espectroscopía de Protones por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA