Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446407

RESUMEN

Bronchopulmonary dysplasia (BPD) is a chronic lung disease commonly seen in preterm infants, and is triggered by infection, mechanical ventilation, and oxygen toxicity. Among other problems, lifelong limitations in lung function and impaired psychomotor development may result. Despite major advances in understanding the disease pathologies, successful interventions are still limited to only a few drug therapies with a restricted therapeutic benefit, and which sometimes have significant side effects. As a more promising therapeutic option, mesenchymal stem cells (MSCs) have been in focus for several years due to their anti-inflammatory effects and their secretion of growth and development promoting factors. Preclinical studies provide evidence in that MSCs have the potential to contribute to the repair of lung injuries. This review provides an overview of MSCs, and other stem/progenitor cells present in the lung, their identifying characteristics, and their differentiation potential, including cytokine/growth factor involvement. Furthermore, animal studies and clinical trials using stem cells or their secretome are reviewed. To bring MSC-based therapeutic options further to clinical use, standardized protocols are needed, and upcoming side effects must be critically evaluated. To fill these gaps of knowledge, the MSCs' behavior and the effects of their secretome have to be examined in more (pre-) clinical studies, from which only few have been designed to date.


Asunto(s)
Displasia Broncopulmonar , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Recién Nacido , Animales , Humanos , Displasia Broncopulmonar/terapia , Displasia Broncopulmonar/patología , Recien Nacido Prematuro , Pulmón/patología , Células Madre/patología , Células Madre Mesenquimatosas/patología , Trasplante de Células Madre Mesenquimatosas/métodos
2.
Biology (Basel) ; 11(11)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36358284

RESUMEN

BACKGROUND: Monocyte-derived macrophages or dendritic cells are of increasing interest for cellular therapeutic products to treat inflammation-related diseases and cancer. However, the isolation method and the culture conditions applied influence the functionality of cells. For some approaches, the adhesion-induced differentiation into macrophages must be prevented to maintain functions attributed to circulating monocytes. The effects of the isolation method on the functionality of non-adherent peripheral monocytes have not yet been investigated. METHODS: The present study examines the impact of the isolation method on cell viability, growth, metabolism, inflammation-induced cytokine response, migratory capacity, and adherence of non-adherent human peripheral monocytes. The monocytes were isolated by magnetic sorting using either positive or negative selection and cultured in cell-repellent plates. RESULTS: The purity and yield of monocytes were higher after positive selection. However, the adherence and migratory capacity, cytokine response, and metabolic activity were decreased compared to negatively selected monocytes. The impaired functionality presented in combination with cell shrinking, thus, indicates the start of cell viability loss. Negatively selected non-adherent monocytes showed no impairment in functionality, and the viability remained high. In conclusion, this approach is better suited for conducting ex vivo modifications of monocytes prior to the intended experimental setup or therapeutic application.

3.
Int J Mol Sci ; 23(17)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36077511

RESUMEN

Insulin receptor substrates (IRSs) are proteins that are involved in signaling through the insulin receptor (IR) and insulin-like growth factor (IGFR). They can also interact with other receptors including growth factor receptors. Thus, they represent a critical node for the transduction and regulation of multiple signaling pathways in response to extracellular stimuli. In addition, IRSs play a central role in processes such as inflammation, growth, metabolism, and proliferation. Previous studies have highlighted the role of IRS proteins in lung diseases, in particular asthma. Further, the members of the IRS family are the common proteins of the insulin growth factor signaling cascade involved in lung development and disrupted in bronchopulmonary dysplasia (BPD). However, there is no study focusing on the relationship between IRS proteins and BPD yet. Unfortunately, there is still a significant gap in knowledge in this field. Thus, in this review, we aimed to summarize the current knowledge with the major goal of exploring the possible roles of IRS in BPD and asthma to foster new perspectives for further investigations.


Asunto(s)
Asma , Displasia Broncopulmonar , Humanos , Recién Nacido , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Fosfoproteínas/metabolismo , Receptor de Insulina/metabolismo
4.
Cancers (Basel) ; 11(12)2019 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-31817988

RESUMEN

The Ras Association Domain Family (RASSF) encodes members of tumor suppressor genes which are frequently inactivated in human cancers. Here, the function and the regulation of RASSF10, that contains a RA (Ras-association) and two coiled domains, was investigated. We utilized mass spectrometry and immuno-precipitation to identify interaction partners of RASSF10. Additionally, we analyzed the up- and downstream pathways of RASSF10 that are involved in its tumor suppressive function. We report that RASSF10 binds ASPP1 (Apoptosis-stimulating protein of p53) and ASPP2 through its coiled-coils. Induction of RASSF10 leads to increased protein levels of ASPP2 and acts negatively on cell cycle progression. Interestingly, we found that RASSF10 is a target of the EMT (epithelial mesenchymal transition) driver TGFß (Transforming growth factor beta) and that negatively associated genes of RASSF10 are significantly over-represented in an EMT gene set collection. We observed a positive correlation of RASSF10 expression and E-cadherin that prevents EMT. Depletion of RASSF10 by CRISPR/Cas9 technology induces the ability of lung cancer cells to proliferate and to invade an extracellular matrix after TGFß treatment. Additionally, knockdown of RASSF10 or ASPP2 induced constitutive phosphorylation of SMAD2 (Smad family member 2). Moreover, we found that epigenetic reduction of RASSF10 levels correlates with tumor progression and poor survival in human cancers. Our study indicates that RASSF10 acts a TGFß target gene and negatively regulates cell growth and invasion through ASPP2. This data suggests that epigenetic loss of RASSF10 contributes to tumorigenesis by promoting EMT induced by TGFß.

5.
Oncotarget ; 9(48): 28976-28988, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29989005

RESUMEN

Non-small cell lung cancer (NSCLC) has a very poor prognosis even when treated with the best therapies available today often including radiation. NSCLC is frequently complicated by pulmonary infections which appear to impair prognosis as well as therapy, whereby the underlying mechanisms are still not known. It was investigated here, whether the bacterial lipopolysaccharides (LPS) might alter the tumor cell radiosensitivity. LPS were found to induce a radioresistance but solely in cells with an active TLR-4 pathway. Proteome profiling array revealed that LPS combined with irradiation resulted in a strong phosphorylation of cAMP response element-binding protein (CREB). Inhibition of CREB binding protein (CBP) by the specific inhibitor ICG-001 not only abrogated the LPS-induced radioresistance but even led to an increase in radiosensitivity. The sensitization caused by ICG-001 could be attributed to a reduction of DNA double-strand break (DSB) repair. It is shown that in NSCLC cells LPS leads to a CREB dependent radioresistance which is, however, reversible through CBP inhibition by the specific inhibitor ICG-001. These findings indicate that the combined treatment with radiation and CBP inhibition may improve survival of NSCLC patients suffering from pulmonary infections.

6.
Cancer Immunol Immunother ; 66(6): 799-809, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28314957

RESUMEN

Pulmonary infections are frequent complications in lung cancer and may worsen its outcome and survival. Inflammatory mediators are suspected to promote tumor growth in non-small-cell lung cancer (NSCLC). Hence, bacterial pathogens may affect lung cancer growth by activation of inflammatory signalling. Against this background, we investigated the effect of purified lipoteichoic acids (LTA) of Staphylococcus aureus (S. aureus) on cellular proliferation and liberation of interleukin (IL)-8 in the NSCLC cell lines A549 and H226. A549 as well as H226 cells constitutively expressed TLR-2 mRNA. Even in low concentrations, LTA induced a prominent increase in cellular proliferation of A549 cells as quantified by automatic cell counting. In parallel, metabolic activity of A549 cells was enhanced. The increase in proliferation was accompanied by an increase in IL-8 mRNA expression and a dose- and time-dependent release of IL-8. Cellular proliferation as well as the release of IL-8 was dependent on specific ligation of TLR-2. Interestingly, targeting IL-8 by neutralizing antibodies completely abolished the LTA-induced proliferation of A549 cells. The pro-proliferative effect of LTA could also be reproduced in the squamous NSCLC cell line H226. In summary, LTA of S. aureus induced proliferation of NSCLC cell lines of adeno- and squamous cell carcinoma origin. Ligation of TLR-2 followed by auto- or paracrine signalling by endogenously synthesized IL-8 is centrally involved in LTA-induced tumor cell proliferation. Therefore, pulmonary infections may exert a direct pro-proliferative effect on lung cancer growth.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/patología , Proliferación Celular , Interleucina-8/metabolismo , Lipopolisacáridos/farmacología , Neoplasias Pulmonares/patología , Ácidos Teicoicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Humanos , Técnicas In Vitro , Interleucina-8/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Staphylococcus aureus , Receptor Toll-Like 2/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...