Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 938, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29507295

RESUMEN

Microtubule asters must be positioned precisely within cells. How forces generated by molecular motors such as dynein are integrated in space and time to enable such positioning remains unclear. In particular, whereas aster movements depend on the drag caused by cytoplasm viscosity, in vivo drag measurements are lacking, precluding a thorough understanding of the mechanisms governing aster positioning. Here, we investigate this fundamental question during the migration of asters and pronuclei in C. elegans zygotes, a process essential for the mixing of parental genomes. Detailed quantification of these movements using the female pronucleus as an in vivo probe establish that the drag coefficient of the male-asters complex is approximately five times that of the female pronucleus. Further analysis of embryos lacking cortical dynein, the connection between asters and male pronucleus, or the male pronucleus altogether, uncovers the balance of dynein-driven forces that accurately position microtubule asters in C. elegans zygotes.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Cigoto/metabolismo , Animales , Núcleo Celular/metabolismo , Centrosoma/metabolismo , Citoplasma/química , Embrión no Mamífero/metabolismo , Femenino , Masculino , Viscosidad
2.
Nat Commun ; 8: 14813, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28332496

RESUMEN

How cellular organelles assemble is a fundamental question in biology. The centriole organelle organizes around a nine-fold symmetrical cartwheel structure typically ∼100 nm high comprising a stack of rings that each accommodates nine homodimers of SAS-6 proteins. Whether nine-fold symmetrical ring-like assemblies of SAS-6 proteins harbour more peripheral cartwheel elements is unclear. Furthermore, the mechanisms governing ring stacking are not known. Here we develop a cell-free reconstitution system for core cartwheel assembly. Using cryo-electron tomography, we uncover that the Chlamydomonas reinhardtii proteins CrSAS-6 and Bld10p together drive assembly of the core cartwheel. Moreover, we discover that CrSAS-6 possesses autonomous properties that ensure self-organized ring stacking. Mathematical fitting of reconstituted cartwheel height distribution suggests a mechanism whereby preferential addition of pairs of SAS-6 rings governs cartwheel growth. In conclusion, we have developed a cell-free reconstitution system that reveals fundamental assembly principles at the root of centriole biogenesis.


Asunto(s)
Proteínas Algáceas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Chlamydomonas reinhardtii/metabolismo , Orgánulos/metabolismo , Proteínas Algáceas/ultraestructura , Proteínas de Ciclo Celular/ultraestructura , Centriolos/ultraestructura , Chlamydomonas reinhardtii/ultraestructura , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Modelos Biológicos , Orgánulos/ultraestructura
3.
Nature ; 434(7032): 462-9, 2005 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-15791247

RESUMEN

A key challenge of functional genomics today is to generate well-annotated data sets that can be interpreted across different platforms and technologies. Large-scale functional genomics data often fail to connect to standard experimental approaches of gene characterization in individual laboratories. Furthermore, a lack of universal annotation standards for phenotypic data sets makes it difficult to compare different screening approaches. Here we address this problem in a screen designed to identify all genes required for the first two rounds of cell division in the Caenorhabditis elegans embryo. We used RNA-mediated interference to target 98% of all genes predicted in the C. elegans genome in combination with differential interference contrast time-lapse microscopy. Through systematic annotation of the resulting movies, we developed a phenotypic profiling system, which shows high correlation with cellular processes and biochemical pathways, thus enabling us to predict new functions for previously uncharacterized genes.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Desarrollo Embrionario/genética , Genoma , Interferencia de ARN , Animales , Caenorhabditis elegans/fisiología , Biología Computacional , Genes de Helminto/genética , Genómica , Fenotipo , ARN de Helminto/genética , ARN de Helminto/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Dev Cell ; 1(3): 363-75, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11702948

RESUMEN

Proper spindle positioning is essential for spatial control of cell division. Here, we show that zyg-8 plays a key role in spindle positioning during asymmetric division of one-cell stage C. elegans embryos by promoting microtubule assembly during anaphase. ZYG-8 harbors a kinase domain and a domain related to Doublecortin, a microtubule-associated protein (MAP) affected in patients with neuronal migration disorders. Sequencing of zyg-8 mutant alleles demonstrates that both domains are essential for function. ZYG-8 binds to microtubules in vitro, colocalizes with microtubules in vivo, and promotes stabilization of microtubules to drug or cold depolymerization in COS-7 cells. Our findings demonstrate that ZYG-8 is a MAP crucial for proper spindle positioning in C. elegans, and indicate that the function of the Doublecortin domain in modulating microtubule dynamics is conserved across metazoan evolution.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas del Helminto/genética , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso , Proteínas Serina-Treonina Quinasas , Huso Acromático/metabolismo , Secuencia de Aminoácidos , Anafase/fisiología , Animales , Células COS , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Polaridad Celular , Quinasas Similares a Doblecortina , Femenino , Genes de Helminto , Genes Reporteros/genética , Proteínas del Helminto/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Microscopía Fluorescente , Microtúbulos/efectos de los fármacos , Datos de Secuencia Molecular , Nocodazol/farmacología , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Huso Acromático/efectos de los fármacos
5.
Novartis Found Symp ; 237: 164-75; discussion 176-81, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11444042

RESUMEN

Cell division during development in many cases generates daughter cells that differ not only in fate, but also in size. We investigate the mechanisms that ensure proper spindle positioning during such asymmetric divisions using the one-cell stage Caenorhabditis elegans embryo as a model system. We utilized a UV laser microbeam as an in vivo microtubule-severing device to probe the forces driving spindle positioning. Our results indicate that extra-spindle pulling forces acting on the spindle poles dictate spindle position along the anterior-posterior embryonic axis. Importantly, forces acting on the posterior spindle pole appear more extensive than those acting on the anterior one, thus explaining the overall posterior spindle displacement that leads to the asymmetric division of the wild-type one-cell stage embryo. In separate work, we analysed a locus called zyg-8, which plays a key role in ensuring proper spindle positioning. Our data show that zyg-8 is required to promote microtubule growth and/or stability during anaphase. We identified the molecular nature of the zyg-8 locus in the course of a large-scale RNAi-based functional genomics screen. ZYG-8 harbours two notable protein domains: a Ca2+/calmodulin-dependent kinase domain, and a domain related to doublecortin, a human microtubule-associated protein involved in neuronal migration.


Asunto(s)
Caenorhabditis elegans/embriología , División Celular/fisiología , Polaridad Celular/fisiología , Embrión no Mamífero/fisiología , Proteínas Asociadas a Microtúbulos , Huso Acromático/metabolismo , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Dominio Doblecortina , Embrión no Mamífero/citología , Rayos Láser , Microtúbulos/metabolismo , Neuropéptidos/metabolismo , Oocitos/fisiología
6.
Genetics ; 157(3): 1267-76, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11238410

RESUMEN

A number of fundamental processes comprise the cell division cycle, including spindle formation, chromosome segregation, and cytokinesis. Our current understanding of these processes has benefited from the isolation and analysis of mutants, with the meiotic divisions in the male germline of Drosophila being particularly well suited to the identification of the required genes. We show here that the fumble (fbl) gene is required for cell division in Drosophila. We find that dividing cells in fbl-deficient testes exhibit abnormalities in bipolar spindle organization, chromosome segregation, and contractile ring formation. Cytological analysis of larval neuroblasts from null mutants reveals a reduced mitotic index and the presence of polyploid cells. Molecular analysis demonstrates that fbl encodes three protein isoforms, all of which contain a domain with high similarity to the pantothenate kinases of A. nidulans and mouse. The largest Fumble isoform is dispersed in the cytoplasm during interphase, concentrates around the spindle at metaphase, and localizes to the spindle midbody at telophase. During early embryonic development, the protein localizes to areas of membrane deposition and/or rearrangement, such as the metaphase and cellularization furrows. Given the role of pantothenate kinase in production of Coenzyme A and in phospholipid biosynthesis, this pattern of localization is suggestive of a role for fbl in membrane synthesis. We propose that abnormalities in synthesis and redistribution of membranous structures during the cell division cycle underlie the cell division defects in fbl mutant cells.


Asunto(s)
División Celular/genética , Drosophila melanogaster/genética , Meiosis/genética , Mitosis/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Clonación Molecular , Coenzima A/biosíntesis , Citoplasma/metabolismo , ADN Complementario/metabolismo , Embrión no Mamífero/metabolismo , Immunoblotting , Masculino , Ratones , Microscopía de Contraste de Fase , Datos de Secuencia Molecular , Mutación , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Mapeo Físico de Cromosoma , Isoformas de Proteínas , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Testículo/metabolismo , Factores de Tiempo
7.
Nature ; 409(6820): 630-3, 2001 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11214323

RESUMEN

Cell divisions that create daughter cells of different sizes are crucial for the generation of cell diversity during animal development. In such asymmetric divisions, the mitotic spindle must be asymmetrically positioned at the end of anaphase. The mechanisms by which cell polarity translates to asymmetric spindle positioning remain unclear. Here we examine the nature of the forces governing asymmetric spindle positioning in the single-cell-stage Caenorhabditis elegans embryo. To reveal the forces that act on each spindle pole, we removed the central spindle in living embryos either physically with an ultraviolet laser microbeam, or genetically by RNA-mediated interference of a kinesin. We show that pulling forces external to the spindle act on the two spindle poles. A stronger net force acts on the posterior pole, thereby explaining the overall posterior displacement seen in wild-type embryos. We also show that the net force acting on each spindle pole is under control of the par genes that are required for cell polarity along the anterior-posterior embryonic axis. Finally, we discuss simple mathematical models that describe the main features of spindle pole behaviour. Our work suggests a mechanism for generating asymmetry in spindle positioning by varying the net pulling force that acts on each spindle pole, thus allowing for the generation of daughter cells with different sizes.


Asunto(s)
Caenorhabditis elegans/embriología , Polaridad Celular , Huso Acromático/fisiología , Animales , Fenómenos Biomecánicos , Caenorhabditis elegans/citología , División Celular , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Modelos Biológicos
8.
Nature ; 408(6810): 331-6, 2000 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-11099034

RESUMEN

Genome sequencing projects generate a wealth of information; however, the ultimate goal of such projects is to accelerate the identification of the biological function of genes. This creates a need for comprehensive studies to fill the gap between sequence and function. Here we report the results of a functional genomic screen to identify genes required for cell division in Caenorhabditis elegans. We inhibited the expression of approximately 96% of the approximately 2,300 predicted open reading frames on chromosome III using RNA-mediated interference (RNAi). By using an in vivo time-lapse differential interference contrast microscopy assay, we identified 133 genes (approximately 6%) necessary for distinct cellular processes in early embryos. Our results indicate that these genes represent most of the genes on chromosome III that are required for proper cell division in C. elegans embryos. The complete data set, including sample time-lapse recordings, has been deposited in an open access database. We found that approximately 47% of the genes associated with a differential interference contrast phenotype have clear orthologues in other eukaryotes, indicating that this screen provides putative gene functions for other species as well.


Asunto(s)
Caenorhabditis elegans/genética , División Celular/genética , Genes de Helminto , ARN de Helminto , Animales , Caenorhabditis elegans/fisiología , Cromosomas , Genómica , Sistemas de Lectura Abierta
9.
J Cell Biol ; 149(7): 1391-404, 2000 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-10871280

RESUMEN

During cytokinesis of animal cells, the mitotic spindle plays at least two roles. Initially, the spindle positions the contractile ring. Subsequently, the central spindle, which is composed of microtubule bundles that form during anaphase, promotes a late step in cytokinesis. How the central spindle assembles and functions in cytokinesis is poorly understood. The cyk-4 gene has been identified by genetic analysis in Caenorhabditis elegans. Embryos from cyk-4(t1689ts) mutant hermaphrodites initiate, but fail to complete, cytokinesis. These embryos also fail to assemble the central spindle. We show that the cyk-4 gene encodes a GTPase activating protein (GAP) for Rho family GTPases. CYK-4 activates GTP hydrolysis by RhoA, Rac1, and Cdc42 in vitro. RNA-mediated interference of RhoA, Rac1, and Cdc42 indicates that only RhoA is essential for cytokinesis and, thus, RhoA is the likely target of CYK-4 GAP activity for cytokinesis. CYK-4 and a CYK-4:GFP fusion protein localize to the central spindle and persist at cell division remnants. CYK-4 localization is dependent on the kinesin-like protein ZEN-4/CeMKLP1 and vice versa. These data suggest that CYK-4 and ZEN-4/CeMKLP1 cooperate in central spindle assembly. Central spindle localization of CYK-4 could accelerate GTP hydrolysis by RhoA, thereby allowing contractile ring disassembly and completion of cytokinesis.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , División Celular/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Proteínas del Helminto/metabolismo , Huso Acromático/fisiología , Proteínas de Unión al GTP rho/metabolismo , Animales , Caenorhabditis elegans/citología , Niño , Clonación Molecular , Embrión no Mamífero , Femenino , Proteínas Activadoras de GTPasa/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas del Helminto/genética , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Masculino , Modelos Biológicos , Mutación/fisiología , Estructura Terciaria de Proteína/genética , Fracciones Subcelulares/metabolismo , Proteínas de Unión al GTP rho/genética
10.
Development ; 127(10): 2063-73, 2000 May.
Artículo en Inglés | MEDLINE | ID: mdl-10769231

RESUMEN

Asymmetric cell divisions require the establishment of an axis of polarity, which is subsequently communicated to downstream events. During the asymmetric cell division of the P(1) blastomere in C. elegans, establishment of polarity depends on the establishment of anterior and posterior cortical domains, defined by the localization of the PAR proteins, followed by the orientation of the mitotic spindle along the previously established axis of polarity. To identify genes required for these events, we have screened a collection of maternal-effect lethal mutations on chromosome II of C. elegans. We have identified a mutation in one gene, ooc-3, with mis-oriented division axes at the two-cell stage. Here we describe the phenotypic and molecular characterization of ooc-3. ooc-3 is required for the correct localization of PAR-2 and PAR-3 cortical domains after the first cell division. OOC-3 is a novel putative transmembrane protein, which localizes to a reticular membrane compartment, probably the endoplasmic reticulum, that spans the whole cytoplasm and is enriched on the nuclear envelope and cell-cell boundaries. Our results show that ooc-3 is required to form the cortical domains essential for polarity after cell division.


Asunto(s)
Blastómeros/fisiología , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/embriología , Proteínas del Helminto/metabolismo , Proteínas de la Membrana/metabolismo , Huso Acromático/fisiología , Secuencia de Aminoácidos , Animales , Retículo Endoplásmico/metabolismo , Proteínas del Helminto/genética , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Proteínas Serina-Treonina Quinasas
11.
J Cell Biol ; 147(1): 135-50, 1999 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-10508861

RESUMEN

We have investigated the role of cytoplasmic dynein in microtubule organizing center (MTOC) positioning using RNA-mediated interference (RNAi) in Caenorhabditis elegans to deplete the product of the dynein heavy chain gene dhc-1. Analysis with time-lapse differential interference contrast microscopy and indirect immunofluorescence revealed that pronuclear migration and centrosome separation failed in one cell stage dhc-1 (RNAi) embryos. These phenotypes were also observed when the dynactin components p50/dynamitin or p150(Glued) were depleted with RNAi. Moreover, in 15% of dhc-1 (RNAi) embryos, centrosomes failed to remain in proximity of the male pronucleus. When dynein heavy chain function was diminished only partially with RNAi, centrosome separation took place, but orientation of the mitotic spindle was defective. Therefore, cytoplasmic dynein is required for multiple aspects of MTOC positioning in the one cell stage C. elegans embryo. In conjunction with our observation of cytoplasmic dynein distribution at the periphery of nuclei, these results lead us to propose a mechanism in which cytoplasmic dynein anchored on the nucleus drives centrosome separation.


Asunto(s)
Caenorhabditis elegans/embriología , Núcleo Celular/metabolismo , Centrosoma/metabolismo , Citoplasma/metabolismo , Dineínas/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos/inmunología , Transporte Biológico , Caenorhabditis elegans/citología , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Gránulos Citoplasmáticos/metabolismo , Complejo Dinactina , Dineínas/química , Dineínas/genética , Dineínas/inmunología , Yema de Huevo/citología , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Femenino , Silenciador del Gen/efectos de los fármacos , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Masculino , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , ARN Bicatenario/genética , ARN Bicatenario/farmacología , Huso Acromático/metabolismo , Factores de Tiempo
12.
J Cell Biol ; 144(5): 927-46, 1999 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-10085292

RESUMEN

To identify novel components required for cell division processes in complex eukaryotes, we have undertaken an extensive mutational analysis in the one cell stage Caenorhabditis elegans embryo. The large size and optical properties of this cell permit observation of cell division processes with great detail in live specimens by simple differential interference contrast (DIC) microscopy. We have screened an extensive collection of maternal-effect embryonic lethal mutations on chromosome III with time-lapse DIC video microscopy. Using this assay, we have identified 48 mutations in 34 loci which are required for specific cell division processes in the one cell stage embryo. We show that mutations fall into distinct phenotypic classes which correspond, among others, to the processes of pronuclear migration, rotation of centrosomes and associated pronuclei, spindle assembly, chromosome segregation, anaphase spindle positioning, and cytokinesis. We have further analyzed pronuclear migration mutants by indirect immunofluorescence microscopy using antibodies against tubulin and ZYG-9, a centrosomal marker. This analysis revealed that two pronuclear migration loci are required for generating normal microtubule arrays and four for centrosome separation. All 34 loci have been mapped by deficiencies to distinct regions of chromosome III, thus paving the way for their rapid molecular characterization. Our work contributes to establishing the one cell stage C. elegans embryo as a powerful metazoan model system for dissecting cell division processes.


Asunto(s)
Caenorhabditis elegans/embriología , División Celular , Mutación , Animales , Caenorhabditis elegans/genética , Mapeo Cromosómico , Embrión no Mamífero , Técnica del Anticuerpo Fluorescente Indirecta , Microscopía Fluorescente , Modelos Biológicos
13.
J Cell Sci ; 111 ( Pt 16): 2283-95, 1998 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9683624

RESUMEN

The mechanisms underlying two types of microtubule-dependent nuclear positioning are discussed. 'MTOC-dependent nuclear positioning' occurs when a nucleus is tightly associated with a microtubule organizing center (MTOC). 'Nuclear tracking along microtubules' is analogous to the motor-driven motility of other organelles and occurs when the nucleus lacks an associated MTOC. These two basic types of microtubule-dependent nuclear positioning may cooperate in many proliferating animal cells to achieve proper nuclear positioning. Microtubule polymerization and dynamics, motor proteins, MAPs and specialized sites such as cortical anchors function to control nuclear movements within cells.


Asunto(s)
Núcleo Celular/fisiología , Animales , Centrosoma/fisiología , Dineínas/fisiología , Femenino , Humanos , Masculino , Microtúbulos/fisiología , Modelos Biológicos , Movimiento/fisiología , Saccharomyces cerevisiae/fisiología
14.
Development ; 124(21): 4361-71, 1997 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9334284

RESUMEN

Stem cells divide asymmetrically, regenerating a parental stem cell and giving rise to a daughter cell with a distinct fate. In many stem cell lineages, this daughter cell undergoes several amplificatory mitoses, thus generating more cells that embark on the differentiation program specific for the given lineage. Spermatogenesis in Drosophila is a model system to identify molecules regulating stem cell lineages. Mutations at two previously identified loci, bag-of-marbles (bam) and benign gonial cell neoplasm (bgcn), prevent progression through spermatogenesis and oogenesis, resulting in the overproliferation of undifferentiated germ cells. Here we investigate how bam and bgcn regulate the male germline stem cell lineage. By generating FLP-mediated clones, we demonstrate that both bam and bgcn act autonomously in the germline to restrict proliferation during spermatogenesis. By using enhancer trap lines, we find that the overproliferating germ cells express markers specific to amplifying germ cells, while at the same time retaining the expression of some markers of stem cell and primary spermatogonial cell fate. However, we find that germ cells accumulating in bam or bgcn mutant testes most resemble amplifying germ cells, because they undergo incomplete cytokinesis and progress through the cell cycle in synchrony within a cyst, which are two characteristics of amplifying germ cells, but not of stem cells. Taken together, our results suggest that bam and bgcn regulate progression through the male germline stem cell lineage by cell-intrinsically restricting the proliferation of amplifying germ cells.


Asunto(s)
Proteínas de Drosophila , Drosophila/crecimiento & desarrollo , Proteínas de Insectos/genética , Espermatogénesis/genética , Neoplasias Testiculares/genética , Animales , División Celular/genética , Citoplasma/metabolismo , Proteínas de Insectos/metabolismo , Masculino , Meiosis , Fase S/genética , Espermatozoides/citología , Células Madre/metabolismo , Testículo/citología , Testículo/fisiología
15.
Development ; 124(21): 4383-91, 1997 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9334286

RESUMEN

To identify regulators of stem cell lineages, we are focusing on spermatogenesis in Drosophila. In spermatogenesis, each germline stem cell divides asymmetrically, renewing itself and producing a transiently amplifying daughter, which divides four times. By screening for mutants in which daughter cells fail to stop dividing, we find that the TGF-beta signal transducers schnurri and punt are required to limit transient amplification of germ cells. Mosaic analysis demonstrates that punt and schnurri act within somatic cyst cells that surround germ cells, rather than in germ cells. Thus, a cyst-cell-derived signal restricts germ cell proliferation and this signal is initiated by input from a member of the TGF-beta superfamily. Thus, a signal relay regulates progression through the germline stem cell lineage.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila , Drosophila/crecimiento & desarrollo , Células Germinativas/fisiología , Receptores de Factores de Crecimiento/fisiología , Factores de Transcripción/fisiología , Receptores de Activinas , Animales , División Celular/genética , Drosophila/genética , Masculino , Mitosis , Mutación , Transducción de Señal , Células Madre/fisiología , Testículo/fisiología , Factor de Crecimiento Transformador beta/metabolismo
16.
Trends Cell Biol ; 6(10): 382-7, 1996 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15157520

RESUMEN

Asymmetric cell divisions are central to the generation of cell-fate diversity because factors that are present in a mother cell and distributed unequally at cell division can generate distinct daughters. The process o f asymmetric cell division can be described as consisting of three steps: setting up an asymmetric cue in the mother cell, localizing factors with respect to this cue, and positioning the plane o f cell division so that localized factors are partitioned asymmetrically between daughters. This review describes how specialized cortical domains play a key role in each of these steps and discusses our current understanding of the molecular nature o f cortical domains and the mechanisms by which they may orchestrate asymmetric cell divisions.

17.
Development ; 122(8): 2437-47, 1996 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8756289

RESUMEN

Spermatogenesis relies on the function of germ-line stem cells, as a continuous supply of differentiated spermatids is produced throughout life. In Drosophila, there must also be somatic stem cells that produce the cyst cells that accompany germ cells throughout spermatogenesis. By lineage tracing, we demonstrate the existence of such somatic stem cells and confirm that of germ-line stem cells. The somatic stem cells likely correspond to the ultrastructurally described cyst progenitor cells. The stem cells for both the germ-line and cyst lineage are anchored around the hub of non-dividing somatic cells located at the testis tip. We then address whether germ cells regulate the behavior of somatic hub cells, cyst progenitors and their daughter cyst cells by analyzing cell proliferation and fate in testes in which the germ line has been genetically ablated. Daughter cyst cells, which normally withdraw from the cell cycle, continue to proliferate in the absence of germ cells. In addition, cells from the cyst lineage switch to the hub cell fate. Male-sterile alleles of chickadee and diaphanous, which are deficient in germ cells, exhibit similar cyst cell phenotypes. We conclude that signaling from germ cells regulates the proliferation and fate of cells in the somatic cyst lineage.


Asunto(s)
Drosophila/citología , Espermatogénesis/fisiología , Testículo/citología , Animales , Comunicación Celular , División Celular , Masculino , Transducción de Señal , Células Madre/fisiología
18.
Cell ; 77(7): 1015-25, 1994 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-8020092

RESUMEN

During spermatogenesis, germ cells execute two meiotic divisions, then withdraw from the cell cycle and initiate postmeiotic differentiation. We show that the gene roughex (rux) is a dose-dependent regulator of meiosis II during Drosophila spermatogenesis. rux mutant germ cells execute the two meiotic divisions, but then undergo an additional M phase resembling an extra meiosis II. Conversely, germ cells with excess rux function fail to undergo meiosis II. rux does not appear to act directly at meiosis II. Rather, rux appears to act through cyclin A during premeiotic G2 to regulate meiosis II. We propose that cyclin A-cdc2 kinase at the G2 to M transition of meiosis I activates a target necessary for meiosis II, thereby coupling the two meiotic divisions.


Asunto(s)
Drosophila melanogaster/citología , Genes de Insecto , Espermatogénesis , Animales , División Celular , Ciclinas/metabolismo , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Infertilidad Masculina/genética , Masculino
19.
Genetics ; 135(2): 489-505, 1993 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8244010

RESUMEN

We describe 83 recessive autosomal male-sterile mutations, generated by single P element mutagenesis in Drosophila melanogaster. Each mutation has been localized to a lettered subdivision of the polytene map. Reversion analyses, as well as complementation tests using available chromosomal deficiencies, indicate that the insertions are responsible for the mutant phenotypes. These mutations represent 63 complementation groups, 58 of which are required for spermatogenesis. Phenotypes of the spermatogenesis mutants were analyzed by light microscopy. Mutations in 12 loci affect germline proliferation, spermatocyte growth, or meiosis. Mutations in 46 other loci disrupt differentiation and maturation of spermatids into motile sperm. This collection of male-sterile mutants provides the basis for a molecular genetic analysis of spermatogenesis.


Asunto(s)
Drosophila melanogaster/fisiología , Mutagénesis Insercional , Espermatogénesis/genética , Espermatozoides/citología , Animales , Diferenciación Celular , Mapeo Cromosómico , Cruzamientos Genéticos , Drosophila melanogaster/genética , Femenino , Fertilidad , Genes Recesivos , Prueba de Complementación Genética , Marcadores Genéticos , Hibridación in Situ , Infertilidad Masculina/genética , Masculino , Meiosis/genética , Fenotipo , Glándulas Salivales/citología
20.
Development ; 114(1): 89-98, 1992 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-1576968

RESUMEN

Formation of motile sperm in Drosophila melanogaster requires the coordination of processes such as stem cell division, mitotic and meiotic control and structural reorganization of a cell. Proper execution of spermatogenesis entails the differentiation of cells derived from two distinct embryonic lineages, the germ line and the somatic mesoderm. Through an analysis of homozygous viable and fertile enhancer detector lines, we have identified molecular markers for the different cell types present in testes. Some lines label germ cells or somatic cyst cells in a stage-specific manner during their differentiation program. These expression patterns reveal transient identities for the cyst cells that had not been previously recognized by morphological criteria. A marker line labels early stages of male but not female germ cell differentiation and proves useful in the analysis of germ line sex-determination. Other lines label the hub of somatic cells around which germ line stem cells are anchored. By analyzing the fate of the somatic hub in an agametic background, we show that the germ line plays some role in directing its size and its position in the testis. We also describe how marker lines enable us to identify presumptive cells in the embryonic gonadal mesoderm before they give rise to morphologically distinct cell types. Finally, this collection of marker lines will allow the characterization of genes expressed either in the germ line or in the soma during spermatogenesis.


Asunto(s)
Drosophila melanogaster/embriología , Mesodermo/citología , Espermatogénesis/fisiología , Espermatozoides/citología , Animales , Diferenciación Celular/fisiología , Elementos de Facilitación Genéticos/genética , Técnica del Anticuerpo Fluorescente , Expresión Génica/fisiología , Marcadores Genéticos , Inmunohistoquímica , Operón Lac/genética , Masculino , Microscopía Electrónica , Microscopía de Contraste de Fase , Espermatozoides/fisiología , Espermatozoides/ultraestructura , Testículo/citología , Testículo/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...