Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Ann Rheum Dis ; 82(9): 1142-1152, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37344156

RESUMEN

INTRODUCTION: Structural reorganisation of the synovium with expansion of fibroblast-like synoviocytes (FLS) and influx of immune cells is a hallmark of rheumatoid arthritis (RA). Activated FLS are increasingly recognised as a critical component driving synovial tissue remodelling by interacting with immune cells resulting in distinct synovial pathotypes of RA. METHODS: Automated high-content fluorescence microscopy of co-cultured cytokine-activated FLS and autologous peripheral CD4+ T cells from patients with RA was established to quantify cell-cell interactions. Phenotypic profiling of cytokine-treated FLS and co-cultured T cells was done by flow cytometry and RNA-Seq, which were integrated with publicly available transcriptomic data from patients with different histological synovial pathotypes. Computational prediction and knock-down experiments were performed in FLS to identify adhesion molecules for cell-cell interaction. RESULTS: Cytokine stimulation, especially with TNF-α, led to enhanced FLS-T cell interaction resulting in cell-cell contact-dependent activation, proliferation and differentiation of T cells. Signatures of cytokine-activated FLS were significantly enriched in RA synovial tissues defined as lymphoid-rich or leucocyte-rich pathotypes, with the most prominent effects for TNF-α. FLS cytokine signatures correlated with the number of infiltrating CD4+ T cells in synovial tissue of patients with RA. Ligand-receptor pair interaction analysis identified ICAM1 on FLS as an important mediator in TNF-mediated FLS-T cell interaction. Both, ICAM1 and its receptors were overexpressed in TNF-treated FLS and co-cultured T cells. Knock-down of ICAM1 in FLS resulted in reduced TNF-mediated FLS-T cell interaction. CONCLUSION: Our study highlights the role of cytokine-activated FLS in orchestrating inflammation-associated synovial pathotypes providing novel insights into disease mechanisms of RA.


Asunto(s)
Artritis Reumatoide , Sinoviocitos , Humanos , Citocinas , Factor de Necrosis Tumoral alfa/farmacología , Membrana Sinovial/patología , Sinoviocitos/patología , Fibroblastos/patología , Células Cultivadas
2.
Front Immunol ; 14: 1096096, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033944

RESUMEN

Various autoimmune diseases are characterized by distinct cell subset distributions and activation profiles of peripheral blood mononuclear cells (PBMCs). PBMCs can therefore serve as an ideal biomarker material, which is easily accessible and allows for screening of multiple cell types. A detailed understanding of the immune landscape is critical for the diagnosis of patients with autoimmune diseases, as well as for a personalized treatment approach. In our study, we investigate the potential of multi-parameter spectral flow cytometry for the identification of patients suffering from autoimmune diseases and its power as an evaluation tool for in vitro drug screening approaches (advanced immunophenotyping). We designed a combination of two 22-color immunophenotyping panels for profiling cell subset distribution and cell activation. Downstream bioinformatics analyses included percentages of individual cell populations and median fluorescent intensity of defined markers which were then visualized as heatmaps and in dimensionality reduction approaches. In vitro testing of epigenetic immunomodulatory drugs revealed an altered activation status upon treatment, which supports the use of spectral flow cytometry as a high-throughput drug screening tool. Advanced immunophenotyping might support the exploration of novel therapeutic drugs and contribute to future personalized treatment approaches in autoimmune diseases and beyond.


Asunto(s)
Enfermedades Autoinmunes , Leucocitos Mononucleares , Humanos , Inmunofenotipificación , Medicina de Precisión , Evaluación Preclínica de Medicamentos , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/tratamiento farmacológico
4.
J Autoimmun ; 135: 102981, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36706534

RESUMEN

BACKGROUND: A 3rd COVID-19 vaccination is currently recommended for patients under immunosuppression. However, a fast decline of antibodies against the SARS-CoV-2 receptor-binding domain (RBD) of the spike protein has been observed. Currently it remains unclear whether immunosuppressive therapy affects kinetics of humoral and cellular immune responses. METHODS: 50 patients under immunosuppression and 42 healthy controls (HCs) received a 3rd dose of an mRNA-based vaccine and were monitored over a 12-weeks period. Humoral immune response was assessed 4 and 12 weeks after 3rd dose. Antibodies were quantified using the Elecsys Anti-SARS-CoV-2 Spike immunoassay against the receptor-binding domain (RBD) of the spike protein. SARS-CoV-2-specific T cell responses were quantified by IFN-γ ELISpot assays. Adverse events, including SARS-CoV-2 infections, were monitored over a 12-week period. RESULTS: At week 12, reduced anti-RBD antibody levels were observed in IMID patients as compared to HCs (median antibody level 5345 BAU/ml [1781-10,208] versus 9650 BAU/ml [6633-16,050], p < 0.001). Reduction in relative antibody levels was significantly higher in IMID patients as compared to HCs at week 12 (p < 0.001). Lowest anti-RBD antibody levels were detected in IMID patients who received biological disease-modifying anti-rheumatic drugs (DMARDs) or a combination therapy with conventional synthetic and biological DMARDs. Number of SARS-CoV-2-specific T cells against wildtype and Omicron variants remained stable over 12 weeks in IMID patients. No serious adverse events were reported. CONCLUSION: Due to a fast decline in anti-RBD antibodies in IMID patients an early 4th vaccination should be considered in this vulnerable group of patients.


Asunto(s)
Antirreumáticos , COVID-19 , Humanos , Vacunas contra la COVID-19 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2 , Anticuerpos , Inmunidad Humoral , Anticuerpos Antivirales , Vacunación
5.
Ann Rheum Dis ; 82(2): 292-300, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36109141

RESUMEN

OBJECTIVES: A third COVID-19 vaccination is recommended for immunosuppressed patients. However, data on immunogenicity and safety of a third COVID-19 vaccination in patients with immune-mediated inflammatory diseases (IMIDs) are sparse and therefore addressed within this clinical trial. METHODS: 60 immunosuppressed patients and 48 healthy controls (HCs) received a third vaccination with an mRNA vaccine. The primary endpoint was defined as the presence of antibody levels against the receptor-binding domain (RBD)>1500 BAU/mL in patients with IMIDs versus HCs. Further endpoints included differences in neutralising antibodies and cellular immune responses after the third vaccination. Reactogenicity was recorded for 7 days, and safety was evaluated until week 4. RESULTS: Rate of individuals with anti-RBD antibodies>1500 BAU/mL was not significantly different after the third vaccination between patients with IMIDs and HCs (91% vs 100% p=0.101). Anti-RBD and neutralising antibody levels were significantly lower in patients with IMIDs after the third vaccination than in HCs (p=0.002 and p=0.016, respectively). In contrast, fold increase in antibody levels between week 0 and 4 was higher in patients with IMIDs. Treatment with biological (b) disease-modifying anti-rheumatic drugs (DMARD) or combination of bDMARDs and conventional synthetic DMARDs was associated with reduced antibody levels. Enhanced cellular immune response to wild type and Omicron peptide stimulation was observed after the third vaccination. No serious adverse event was attributed to the third vaccination. CONCLUSION: Our clinical trial data support the immunogenicity and safety of a third COVID-19 vaccination in patients with IMIDs. However, effects of DMARD therapy on immunogenicity should be considered. TRIAL REGISTRATION NUMBER: EudraCT No: 2021-002693-10.


Asunto(s)
Vacunas contra la COVID-19 , Humanos , Anticuerpos Antivirales , Antirreumáticos , COVID-19 , Vacunas contra la COVID-19/efectos adversos , Inmunogenicidad Vacunal , Agentes Inmunomoduladores , Vacunación
6.
Front Immunol ; 13: 974987, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189225

RESUMEN

Background: Patients with inborn errors of immunity (IEI) are at increased risk for severe courses of SARS-CoV-2 infection. COVID-19 vaccination provides effective protection in healthy individuals. However, it remains unclear whether vaccination is efficient and safe in patients with constitutional dysfunctions of the immune system. Thus, we analyzed the humoral response, adverse reactions and assessed the disease activity of the underlying disease after COVID-19 vaccination in a cohort of patients suffering from IEIs or mannan-binding lectin deficiency (MBLdef). Methods: Vaccination response was assessed after basic immunization using the Elecsys anti-SARS-CoV-2 S immunoassay and via Vero E6 cell based assay to detect neutralization capabilities. Phenotyping of lymphocytes was performed by flow cytometry. Patient charts were reviewed for disease activity, autoimmune phenomena as well as immunization status and reactogenicity of the vaccination. Activity of the underlying disease was assessed using a patient global numeric rating scale (NRS). Results: Our cohort included 11 individuals with common variable immunodeficiency (CVID), one patient with warts hypogammaglobulinemia immunodeficiency myelokathexis (WHIM) syndrome, two patients with X-linked agammaglobulinemia (XLA), one patient with Muckle Wells syndrome, two patients with cryopyrin-associated periodic syndrome, one patient with Interferon-gamma (IFN-gamma) receptor defect, one patient with selective deficiency in pneumococcal antibody response combined with a low MBL level and seven patients with severe MBL deficiency. COVID-19 vaccination was generally well tolerated with little to no triggering of autoimmune phenomena. 20 out of 26 patients developed an adequate humoral vaccine response. 9 out of 11 patients developed a T cell response comparable to healthy control subjects. Tested immunoglobulin replacement therapy (IgRT) preparations contained Anti-SARS-CoV-2 S antibodies implicating additional protection through IgRT. Summary: In summary the data support the efficacy and safety of a COVID-19 vaccination in patients with IEIs/MBLdef. We recommend evaluation of the humoral immune response and testing for virus neutralization after vaccination in this cohort.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Lectina de Unión a Manosa , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Humanos , Interferón gamma , SARS-CoV-2 , Vacunación
7.
Nat Commun ; 13(1): 5362, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097029

RESUMEN

Impaired response to COVID-19 vaccination is of particular concern in immunosuppressed patients. To determine the best vaccination strategy for this vulnerable group we performed a single center, 1:1 randomized blinded clinical trial. Patients who failed to seroconvert upon two mRNA vaccinations (BNT162b2 or mRNA-1273) are randomized to receive either a third dose of the same mRNA or the vector vaccine ChAdOx1 nCoV-19. Primary endpoint is the difference in SARS-CoV-2 spike antibody seroconversion rate between vector and mRNA vaccinated patients four weeks after the third dose. Secondary outcomes include cellular immune responses. Seroconversion rates at week four are significantly higher in the mRNA (homologous vaccination, 15/24, 63%) as compared to the vector vaccine group (heterologous vaccination, 4/22, 18%). SARS-CoV-2-specific T-cell responses are reduced but could be increased after a third dose of either vector or mRNA vaccine. In a multivariable logistic regression analysis, patient age and vaccine type are associated with seroconversion. No serious adverse event is attributed to COVID-19 booster vaccination. Efficacy and safety data underline the importance of a booster vaccination and support the use of a homologous mRNA booster vaccination in immunosuppressed patients.Trial registration: EudraCT No.: 2021-002693-10.


Asunto(s)
Vacuna BNT162 , Vacunas contra la COVID-19 , COVID-19 , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , ChAdOx1 nCoV-19 , Humanos , Inmunización Secundaria , ARN Mensajero , SARS-CoV-2/genética , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
8.
Ann Rheum Dis ; 81(12): 1750-1756, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35977809

RESUMEN

OBJECTIVES: Patients under rituximab therapy are at high risk for a severe COVID-19 disease course. Humoral immune responses to SARS-CoV-2 vaccination are vastly diminished in B-cell-depleted patients, even after a third vaccine dose. However, it remains unclear whether these patients benefit from a fourth vaccination and whether continued rituximab therapy affects antibody development. METHODS: In this open-label extension trial, 37 rituximab-treated patients who received a third dose with either a vector or mRNA-based vaccine were vaccinated a fourth time with an mRNA-based vaccine (mRNA-1273 or BNT162b2). Key endpoints included the humoral and cellular immune response as well as safety after a fourth vaccination. RESULTS: The number of patients who seroconverted increased from 12/36 (33%) to 21/36 (58%) following the fourth COVID-19 vaccination. In patients with detectable antibodies to the spike protein's receptor-binding domain (median: 8.0 binding antibody units (BAU)/mL (quartiles: 0.4; 13.8)), elevated levels were observed after the fourth vaccination (134.0 BAU/mL (quartiles: 25.5; 1026.0)). Seroconversion and antibody increase were strongly diminished in patients who received rituximab treatment between the third and the fourth vaccination. The cellular immune response declined 12 weeks after the third vaccination, but could only be slightly enhanced by a fourth vaccination. No unexpected safety signals were detected, one serious adverse event not related to vaccination occurred. CONCLUSIONS: A fourth vaccine dose is immunogenic in a fraction of rituximab-treated patients. Continuation of rituximab treatment reduced humoral immune response, suggesting that rituximab affects a second booster vaccination. It might therefore be considered to postpone rituximab treatment in clinically stable patients. TRIAL REGISTRATION NUMBER: 2021-002348-57.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , Rituximab/efectos adversos , Anticuerpos Antivirales , SARS-CoV-2 , Vacuna BNT162 , Vacunación , ARN Mensajero , Inmunogenicidad Vacunal
9.
Respir Med Case Rep ; 37: 101650, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35494554

RESUMEN

A 53-year old female patient with history of hypocomplementaemic urticarial vasculitis syndrome (HUVS) and polyarteritis nodosa presented with progressive dyspnoea on exertion due to emphysema. Lung function revealed a severe obstructive ventilator disorder with a forced expiratory volume in 1 second of 22% of predicted, and a significant hyperinflation with a residual volume of 321% of predicted. Multi-detector computed tomography (MDCT) scan and quantitative CT analysis (StratX software) confirmed a lower lobe predominant emphysema. Considering the young age, the very severely impaired lung function, the relatively low nicotine abuse, the exclusion of alpha-1 antitrypsin deficiency, together with the known diagnosis of HUVS, the emphysema was more likely due to the vasculitis than to a typical chronic obstructive lung disease. MDCT scan showed that particularly the segment 8 of the right lower lobe was severely emphysematous destroyed and hyperinflated. Invasive Chartis® measurement revealed no significant collateral ventilation of the isolated segment 8 of the right lower lobe, so that an endobronchial valve placement was performed. Three months following intervention, the MDCT scan revealed a complete collapse of the segment 8 on the right, which was associated with a significant clinical benefit and a mild reduction of the hyperinflation in the lung function test.

11.
Allergo J Int ; 30(5): 155-168, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178577

RESUMEN

BACKGROUND: The vaccines against the coronavirus disease 2019 (COVID-19) approved in the European Union represent a decisive step in the fight against the pandemic. The application of these available vaccines to patients with pre-existing immunological conditions leads to a multitude of questions regarding efficacy, side effects and the necessary patient information. RESULTS: This review article provides insight into mechanisms of action of the currently available severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and summarises the current state of science as well as expert recommendations regarding tolerability of the vaccines. In addition, the potential to develop protective immune responses is determined. A special focus is given on patients under immunosuppression or in treatment with immunomodulatory drugs. Special groups of the population such as children, pregnant women and the elderly are also considered. CONCLUSION: Despite the need for a patient-specific risk-benefit assessment, the consensus among experts is that patients with immunological diseases in particular benefit from the induced immune protection after COVID-19 vaccination and do not have an increased risk of side effects.

12.
JCI Insight ; 5(4)2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32102981

RESUMEN

Some effector CD4+ T cell subsets display cytotoxic activity, thus breaking the functional dichotomy of CD4+ helper and CD8+ cytotoxic T lymphocytes. However, molecular mechanisms regulating CD4+ cytotoxic T lymphocyte (CD4+ CTL) differentiation are poorly understood. Here we show that levels of histone deacetylases 1 and 2 (HDAC1-HDAC2) are key determinants of CD4+ CTL differentiation. Deletions of both Hdac1 and 1 Hdac2 alleles (HDAC1cKO-HDAC2HET) in CD4+ T cells induced a T helper cytotoxic program that was controlled by IFN-γ-JAK1/2-STAT1 signaling. In vitro, activated HDAC1cKO-HDAC2HET CD4+ T cells acquired cytolytic activity and displayed enrichment of gene signatures characteristic of effector CD8+ T cells and human CD4+ CTLs. In vivo, murine cytomegalovirus-infected HDAC1cKO-HDAC2HET mice displayed a stronger induction of CD4+ CTL features compared with infected WT mice. Finally, murine and human CD4+ T cells treated with short-chain fatty acids, which are commensal-produced metabolites acting as HDAC inhibitors, upregulated CTL genes. Our data demonstrate that HDAC1-HDAC2 restrain CD4+ CTL differentiation. Thus, HDAC1-HDAC2 might be targets for the therapeutic induction of CD4+ CTLs.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Diferenciación Celular/fisiología , Histona Desacetilasa 1/fisiología , Histona Desacetilasa 2/fisiología , Linfocitos T Citotóxicos/fisiología , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Ácidos Grasos/farmacología , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Humanos , Ratones , Ratones Noqueados , Transducción de Señal/fisiología , Linfocitos T Citotóxicos/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
13.
J Autoimmun ; 110: 102376, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31862128

RESUMEN

Autoimmune diseases, such as Systemic Lupus Erythematosus (SLE) or Rheumatoid Arthritis (RA) are characterized by the breakdown of immunological tolerance. Defects of regulatory T cells have been described among the various mechanisms, that are important for the development of autoimmune diseases, due to their critical role as regulators of peripheral immune tolerance and homeostasis. Initially T suppressor cells have been described as one population of peripheral T cells. Based on new technological advances a new understanding of the heterogeneity of different Treg cell populations in the lymphoid and non-lymphoid tissue has evolved over the last years. While initially Foxp3 has been defined as the main master regulator of Treg cells, we have learned that Treg cells from various tissue can be identified by a specific transcriptomic and epigenetic signature. Epigenetic mechanisms allow Treg cell stability, but we have also learned that certain Treg subsets are plastic and can under specific circumstances even enhance autoimmunity and inflammatory processes. Quantitative and functional defects of Treg cells have been observed in a variety of autoimmune diseases. Due to our understanding of the nature of this cell population, Treg cells have been a target of new Treg based therapies, such as low-dose IL-2. In addition, ongoing clinical trials aim to test safety and efficacy of transferred, in vitro expanded Treg cells in patients with autoimmune diseases and transplant patients.


Asunto(s)
Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Autoinmunidad , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/terapia , Biomarcadores , Manejo de la Enfermedad , Epigénesis Genética , Epigenómica , Regulación de la Expresión Génica , Homeostasis , Humanos , Análisis de la Célula Individual
14.
J Autoimmun ; 108: 102379, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31883829

RESUMEN

Rheumatoid Arthritis (RA) represents a chronic T cell-mediated inflammatory autoimmune disease. Studies have shown that epigenetic mechanisms contribute to the pathogenesis of RA. Histone deacetylases (HDACs) represent one important group of epigenetic regulators. However, the role of individual HDAC members for the pathogenesis of arthritis is still unknown. In this study we demonstrate that mice with a T cell-specific deletion of HDAC1 (HDAC1-cKO) are resistant to the development of Collagen-induced arthritis (CIA), whereas the antibody response to collagen type II was undisturbed, indicating an unaltered T cell-mediated B cell activation. The inflammatory cytokines IL-17 and IL-6 were significantly decreased in sera of HDAC1-cKO mice. IL-6 treated HDAC1-deficient CD4+ T cells showed an impaired upregulation of CCR6. Selective inhibition of class I HDACs with the HDAC inhibitor MS-275 under Th17-skewing conditions inhibited the upregulation of chemokine receptor 6 (CCR6) in mouse and human CD4+ T cells. Accordingly, analysis of human RNA-sequencing (RNA-seq) data and histological analysis of synovial tissue samples from human RA patients revealed the existence of CD4+CCR6+ cells with enhanced HDAC1 expression. Our data indicate a key role for HDAC1 for the pathogenesis of CIA and suggest that HDAC1 and other class I HDACs might be promising targets of selective HDAC inhibitors (HDACi) for the treatment of RA.


Asunto(s)
Artritis Reumatoide/etiología , Artritis Reumatoide/metabolismo , Susceptibilidad a Enfermedades , Histona Desacetilasa 1/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Artritis Reumatoide/patología , Biomarcadores , Colágeno/efectos adversos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Histona Desacetilasa 1/genética , Humanos , Mediadores de Inflamación/metabolismo , Ratones , Ratones Noqueados , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
16.
Semin Immunopathol ; 41(3): 301-314, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30953162

RESUMEN

Regulatory (Treg) cells are key regulators of inflammation and important for immune tolerance and homeostasis. A major progress has been made in the identification and classification of Treg cells. Due to technological advances, we have gained deep insights in the epigenetic regulation of Treg cells. The use of fate reporter mice allowed addressing the functional consequences of loss of Foxp3 expression. Depending on the environment Treg cells gain effector functions upon loss of Foxp3 expression. However, the traditional view that Treg cells become necessarily pathogenic by gaining effector functions was challenged by recent findings and supports the notion of Treg cell lineage plasticity. Treg cell stability is also a major issue for Treg cell therapies. Clinical trials are designed to use polyclonal Treg cells as therapeutic tools. Here, we summarize the role of Treg cells in selected autoimmune diseases and recent advances in the field of Treg targeted therapies.


Asunto(s)
Autoinmunidad , Linfocitos T Reguladores/inmunología , Animales , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/terapia , Diferenciación Celular/inmunología , Plasticidad de la Célula/inmunología , Epigénesis Genética , Humanos , Inmunomodulación , Inmunoterapia Adoptiva , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/metabolismo
17.
J Cell Mol Med ; 22(11): 5278-5285, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30133119

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, characterized by synovial infiltration of various inflammatory cells. Chemokines are involved in controlling the recruitment of different cell types into the synovial membrane. The role of CCR6 in the development of arthritis so far remains unclear. In this study, we investigated the role of CCR6 in the pathogenesis of arthritis using three different murine arthritis models. Compared to WT animals, CCR6-/- mice developed less clinical signs of arthritis in the collagen-induced arthritis model but not in the K/BxN serum transfer arthritis model and in the human tumour necrosis factor transgenic arthritis model, suggesting a defect in adaptive effector functions but intact innate effector functions in the development of arthritis in CCR6-/- animals. In line with this, anti-collagen antibody levels were significantly reduced in CCR6-/- mice compared with WT mice. Moreover, we demonstrate enhanced osteoclastogenesis in vitro in CCR6-/- mice compared with WT mice. However, we did not detect differences in bone mass under steady state conditions in vivo between WT and CCR6-deficient mice. These data suggest that CCR6 is crucially involved in adaptive but not in innate immunity-driven arthritis. CCR6 or its chemokine ligand CCL20 might represent a possible new target for the treatment of RA.


Asunto(s)
Artritis Experimental/genética , Artritis Reumatoide/genética , Enfermedades Autoinmunes/genética , Quimiocina CCL20/genética , Receptores CCR6/genética , Animales , Artritis Experimental/inmunología , Artritis Experimental/patología , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Quimiocina CCL20/inmunología , Humanos , Inmunidad Innata/genética , Ratones , Receptores CCR6/inmunología , Membrana Sinovial/inmunología , Membrana Sinovial/patología
18.
J Autoimmun ; 86: 51-61, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28964722

RESUMEN

Multiple sclerosis (MS) is a human neurodegenerative disease characterized by the invasion of autoreactive T cells from the periphery into the CNS. Application of pan-histone deacetylase inhibitors (HDACi) ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model for MS, suggesting that HDACi might be a potential therapeutic strategy for MS. However, the function of individual HDAC members in the pathogenesis of EAE is not known. In this study we report that mice with a T cell-specific deletion of HDAC1 (using the Cd4-Cre deleter strain; HDAC1-cKO) were completely resistant to EAE despite the ability of HDAC1cKO CD4+ T cells to differentiate into Th17 cells. RNA sequencing revealed STAT1 as a prominent upstream regulator of differentially expressed genes in activated HDAC1-cKO CD4+ T cells and this was accompanied by a strong increase in phosphorylated STAT1 (pSTAT1). This suggests that HDAC1 controls STAT1 activity in activated CD4+ T cells. Increased pSTAT1 levels correlated with a reduced expression of the chemokine receptors Ccr4 and Ccr6, which are important for the migration of T cells into the CNS. Finally, EAE susceptibility was restored in WT:HDAC1-cKO mixed BM chimeric mice, indicating a cell-autonomous defect. Our data demonstrate a novel pathophysiological role for HDAC1 in EAE and provide evidence that selective inhibition of HDAC1 might be a promising strategy for the treatment of MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Histona Desacetilasa 1/metabolismo , Esclerosis Múltiple/metabolismo , Factor de Transcripción STAT1/metabolismo , Células Th17/fisiología , Animales , Movimiento Celular , Células Cultivadas , Quimera , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Histona Desacetilasa 1/genética , Humanos , Ratones , Ratones Noqueados , Esclerosis Múltiple/inmunología , Receptores CCR4/metabolismo , Receptores CCR6/metabolismo , Factor de Transcripción STAT1/genética
19.
FASEB J ; 30(11): 3800-3809, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27492924

RESUMEN

T cells must tightly regulate their metabolic processes to cope with varying bioenergetic demands depending on their state of differentiation. The metabolic sensor AMPK is activated in states of low energy supply and modulates cellular metabolism toward a catabolic state. Although this enzyme is known to be particularly active in regulatory T (Treg) cells, its impact on T helper (Th)-cell differentiation is poorly understood. We investigated the impact of several AMPK activators on Treg-cell differentiation and found that the direct activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide), but not the indirect activators metformin and 2-deoxyglucose, strongly enhanced Treg-cell induction by specifically enhancing Treg-cell expansion. Conversely, Th17 generation was impaired by the agent. Further investigation of the metabolic background of our observations revealed that AICAR enhanced both cellular mitochondrogenesis and fatty acid uptake. Consistently, increased Treg induction was entirely reversible on inhibition of fatty acid oxidation, thus confirming the dependence of AICAR's effects on metabolic pathways alterations. Translating our findings to an in vivo model, we found that the substance enhanced Treg cell generation on IL-2 complex-induced immune stimulation. We provide a previously unrecognized insight into the delicate interplay between immune cell function and metabolism and delineate a potential novel strategy for metabolism-targeting immunotherapy.-Gualdoni, G. A., Mayer, K. A., Göschl, L., Boucheron, N., Ellmeier, W., Zlabinger, G. J. The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Ribonucleótidos/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Células Th17/efectos de los fármacos , Adenosina Monofosfato/metabolismo , Aminoimidazol Carboxamida/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Hipoglucemiantes/farmacología , Interleucina-2/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Metformina/farmacología , Oxidación-Reducción , Linfocitos T Reguladores/metabolismo , Células Th17/metabolismo
20.
Rheumatology (Oxford) ; 55(4): 710-20, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26672908

RESUMEN

OBJECTIVE: Abatacept (CTLA-4Ig) blocks CD28-mediated T cell activation by binding to the costimulatory B7 ligands CD80/CD86 on antigen presenting cells. Costimulatory molecules, however, can also be expressed on T cells upon activation. Therefore, the aim of our study was to investigate direct effects of CTLA-4Ig on distinct T cell subsets in RA patients. METHODS: Phenotypic and functional analyses of CD4(+) T cells, including CD4(+) FoxP3(+) CD25(+) regulatory T cells (Treg), from RA patients were performed before and during CTLA-4Ig therapy. In addition T cells from healthy volunteers were analysed on in vitro culture with CTLA-4Ig or anti-CD80 and anti-CD86 antibodies. Apoptotic DNA fragmentation in CD4(+) and CD4(+) FoxP3(+) T cells was measured by TUNEL staining. RESULTS: We observed an increase in T cells, including Treg cells, after initiation of CTLA-4Ig therapy, which was linked to a downregulation of activation-associated marker molecules and CD95 on CD4(+) T cells and Treg cells. CTLA-4Ig decreased CD95-mediated cell death in vitro in a dose-dependent manner. Functional analysis of isolated Treg cells from RA patients further revealed a diminished suppression of responder T cell proliferation. This was found to be due to CTLA-4Ig-mediated blocking of CD80 and CD86 on responder T cells that led to a diminished susceptibility for Treg cell suppression. CONCLUSION: CTLA-4Ig therapy in RA patients exerts effects beyond the suppression of T cell activation, which has to be taken into account as an additional mechanism of CTLA-4Ig treatment.


Asunto(s)
Abatacept/farmacología , Antirreumáticos/farmacología , Apoptosis/efectos de los fármacos , Artritis Reumatoide/inmunología , Subgrupos de Linfocitos T/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Abatacept/uso terapéutico , Antirreumáticos/uso terapéutico , Apoptosis/inmunología , Artritis Reumatoide/tratamiento farmacológico , Linfocitos T CD4-Positivos/efectos de los fármacos , Células Cultivadas , Femenino , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Inmunofenotipificación , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Receptor fas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...