Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BJU Int ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923777

RESUMEN

OBJECTIVES: To compare Uromonitor® (U-Monitor Lda, Porto, Portugal), a multitarget DNA assay that detects mutated proto-oncogenes (telomerase reverse transcriptase [TERT], fibroblast growth factor receptor 3 [FGFR-3], Kirsten rat sarcoma viral oncogene homologue [KRAS]), with urine cytology in the urine-based diagnosis of urothelial carcinoma of the bladder (UCB) within a multicentre real-world setting. PATIENTS AND METHODS: This multicentre, prospective, double-blind study was conducted across four German urological centres from 2019 to 2024. We evaluated the diagnostic performance of Uromonitor compared to urine cytology in a cohort of patients with UCB and in healthy controls within a real-world setting. Sensitivity, specificity, positive-predictive value (PPV), negative-predictive value (NPV), and accuracy of the tests were measured, in addition to multivariate analyses to assess the ability of individual proto-oncogene mutations in detecting UCB. The biometric sample size was designed to achieve a 10% difference in sensitivity. RESULTS: Patients with UCB comprised 63.7% (339/532) of the study group. Uromonitor showed a sensitivity, specificity, PPV, NPV, accuracy, and an area-under-the-curve of 49.3%, 93.3%, 92.8%, 51.1%, 65.2%, and 0.713%, respectively. These metrics did not demonstrate statistical superiority over urine cytology in terms of sensitivity (44.6%; P = 0.316). Moreover, the comparison of additional test parameters, as well as the comparison within various sensitivity analyses, yielded no significant disparity between the two urinary tests. Multivariate logistic regression underscored the significant predictive value of a positive Uromonitor for detecting UCB (odds ratio [OR] 9.03; P < 0.001). Furthermore, mutations in TERT and FGFR-3 were independently associated with high odds of UCB detection (OR 13.30 and 7.04, respectively), while KRAS mutations did not exhibit predictive capability. CONCLUSION: Despite its innovative approach, Uromonitor fell short of confirming the superior results anticipated from previous studies in this real-world setting. The search for an optimal urine-based biomarker for detecting and monitoring UCB remains ongoing. Results from this study highlight the complexity of developing non-invasive diagnostic tools and emphasise the importance of continued research efforts to refine these technologies.

2.
Urol Oncol ; 41(12): 484.e17-484.e26, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37407421

RESUMEN

INTRODUCTION AND OBJECTIVE: BTA stat®, NMP22® BladderChek®, UBC® Rapid Test, and CancerCheck® UBC® rapid VISUAL are urinary-based rapid tests. This multicenter study is the first study comparing all available rapid tests on a large cohort of bladder cancer patients and healthy controls in one setting. METHODS: In total 732 urine samples (second morning urine) in a real-world assessment have been analyzed. We evaluated clinical samples from 464 patients with histologically confirmed urothelial tumors of the urinary bladder (17 solitary CIS, 189 low-grade, 187 high-grade nonmuscle invasive, 71 high-grade muscle invasive), 77 patients with No Evidence of Disease (NED), and from 191 healthy controls. Urine samples were analyzed by the BTA stat®, NMP22® BladderChek®, UBC® Rapid Test point-of-care (POC) system using the concile Omega 100 POC reader, and CancerCheck® UBC® rapid VISUAL. Sensitivities and specificities were calculated by contingency analyses. RESULTS: All investigated urinary markers detected more pathological concentrations in urine of bladder cancer patients compared to tumor-free patients. The calculated diagnostic sensitivities for BTA stat®, NMP22® BladderChek®, UBC® Rapid Test, CancerCheck® UBC® rapid VISUAL, and cytology were 62.4%, 13.4%, 58.2%, 28.6%, 36.2% for low-grade, 83.4%, 49.5%, 84.5%, 63.1%, 71.2% for high-grade nonmuscle invasive, and 95.8%, 35.2%, 76.1%, 50.7%, 67.7% for high-grade muscle-invasive bladder cancer. The specificity was 67.9%, 95.5%, 79.4%, 94.4%, and 83.7%, respectively. The area under the curve (AUC) after receiver operating characteristics (ROC) analysis for high-grade non-muscle-invasive tumors was 0.757, 0.725, 0.819, 0.787, and 0.774, respectively. CONCLUSIONS: The analysis of more than 700 urine samples offers an objective view on urine-based rapid diagnostics. Elevated pathological concentrations of markers in urine of bladder cancer patients were detected in all investigated tests. The highest sensitivities for high-grade non-muscle-invasive tumors were calculated for BTA stat® and UBC® Rapid Test, whereas NMP22® BladderChek®, and cytology showed the highest specificities. BTA stat® and UBC® Rapid Test have the potential to be used as a clinical valuable urinary protein biomarker for the detection of high-grade non-muscle-invasive bladder cancer patients and could be included in the management of these tumors.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Vejiga Urinaria , Humanos , Biomarcadores de Tumor/orina , Neoplasias de la Vejiga Urinaria/patología , Proteínas Nucleares/orina , Sensibilidad y Especificidad
3.
BJU Int ; 130(6): 754-763, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34928524

RESUMEN

OBJECTIVES: To evaluate the clinical utility of the urinary bladder cancer antigen test UBC® Rapid for the diagnosis of bladder cancer (BC) and to develop and validate nomograms to identify patients at high risk of primary BC. PATIENTS AND METHODS: Data from 1787 patients from 13 participating centres, who were tested between 2012 and 2020, including 763 patients with BC, were analysed. Urine samples were analysed with the UBC® Rapid test. The nomograms were developed using data from 320 patients and externally validated using data from 274 patients. The diagnostic accuracy of the UBC® Rapid test was evaluated using receiver-operating characteristic curve analysis. Brier scores and calibration curves were chosen for the validation. Biopsy-proven BC was predicted using multivariate logistic regression. RESULTS: The sensitivity, specificity, and area under the curve for the UBC® Rapid test were 46.4%, 75.5% and 0.61 (95% confidence interval [CI] 0.58-0.64) for low-grade (LG) BC, and 70.5%, 75.5% and 0.73 (95% CI 0.70-0.76) for high-grade (HG) BC, respectively. Age, UBC® Rapid test results, smoking status and haematuria were identified as independent predictors of primary BC. After external validation, nomograms based on these predictors resulted in areas under the curve of 0.79 (95% CI 0.72-0.87) and 0.95 (95% CI: 0.92-0.98) for predicting LG-BC and HG-BC, respectively, showing excellent calibration associated with a higher net benefit than the UBC® Rapid test alone for low and medium risk levels in decision curve analysis. The R Shiny app allows the results to be explored interactively and can be accessed at www.blucab-index.net. CONCLUSION: The UBC® Rapid test alone has limited clinical utility for predicting the presence of BC. However, its combined use with BC risk factors including age, smoking status and haematuria provides a fast, highly accurate and non-invasive tool for screening patients for primary LG-BC and especially primary HG-BC.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/orina , Nomogramas , Hematuria , Curva ROC , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...