Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Lasers Med Sci ; 39(1): 91, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491201

RESUMEN

Investigating combined treatment methodologies is crucial for addressing the complex nature of cancer. As an emerging strategy, nano-biotechnology encourages the design of unique nanocarriers possessing simultaneous therapeutic application properties. This study aims to explore the combined effects of photodynamic and anticancer treatments using a multifunctional nanocarrier system co-administering the photosensitizer IR780 and the anticancer agent curcumin (Cur) on lung cancer cells. Nanocarriers were prepared by encapsulation IR780 and Cur inside polyethylene glycol-capped mesoporous silica nanoparticles (Cur&IR780@MSN). Various concentrations of nanocarriers were evaluated on A549 cells following 5 min NIR laser light (continuous wave, 785 nm, 500 mW/cm2) irradiation. The internalization of nanocarriers was observed through the fluorescence of Cur. Changes in cell viability were determined using the MTT assay and AO/PI staining. A scratch assay analysis was also performed to examine the impact of combined treatments on cell migration. Characterization of the nanocarriers revealed adequate hydrophobic drug loading, temperature-inhibited feature, enhanced reactive oxygen species generation, a pH-dependent curcumin release profile, and high biocompatibility. Cur&IR780@MSN, which enabled the observation of synergistic treatment efficacy, successfully reduced cell viability by up to 78%. In contrast, monotherapies with curcumin-loaded nanocarriers (Cur@MSN) and IR780-loaded nanocarriers (IR780@MSN) resulted in a 38% and 56% decrease in cell viability, respectively. The constructed Cur&IR780@MSN nanocarrier has demonstrated remarkable performance in the application of combination therapies for lung cancer cells. These nanocarriers have the potential to inspire future studies in tumor treatment methods.


Asunto(s)
Antineoplásicos , Curcumina , Neoplasias Pulmonares , Nanopartículas , Fotoquimioterapia , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Curcumina/farmacología , Curcumina/uso terapéutico , Dióxido de Silicio/química , Portadores de Fármacos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Nanopartículas/química
2.
Photodiagnosis Photodyn Ther ; 36: 102616, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34740839

RESUMEN

Photodynamic therapy (PDT), has a potential to cure cancerous prostate tissue with minimal side effects. Traditional PDT, however, mostly utilized visible (VIS) light range with direct application of hydrophobic photosensitizers which may not be adequate in clinical practice for especially deep-seated cancer cells because of poor penetration of VIS wavelengths. Here, we report near infrared light (NIR) induced and dual photosensitizers (PS) encapsulated PDT strategy to reduce prostate cancer cells - PC3. The designed nanoplatform (MC540/ZnPc-UCNP@Au), in this study, include upconversion nanoparticles (UCNP) synthesis to convert NIR light into multiple VIS wavelengths, porous silica coating to upload dual photosensitizers (MC540/ZnPc), and gold (Au) functionalization to enhance PDT treatment. High chemical stabilization provided MC540/ZnPc-UCNP@Au show excellent biocompatibility, and efficient PDT treatment for prostate cancer cells. In fact, the fluorescence of the synthesized nanoplatforms, upon NIR light excitation, can produce considerable amount of ROS in 5 min, as it is well matched with the absorption of MC540, ZnPc and Au nanoparticles (np). In addition, the easy visualization of cellular internalized/adsorbed nanoplatforms reveal the in situ cell imaging possibility for diagnosis. Based on the evidence of the results, NIR light activated MC540/ZnPc-UCNP@Au may offer a PDT technique for the treatment of prostate cancer.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Fotoquimioterapia , Neoplasias de la Próstata , Línea Celular Tumoral , Oro , Humanos , Rayos Infrarrojos , Masculino , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Neoplasias de la Próstata/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA