Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Struct Dyn ; 10(2): 024301, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36970496

RESUMEN

We present time-resolved scanning x-ray microscopy measurements with picosecond photo-excitation via a tailored infrared pump laser at a scanning transmission x-ray microscope. Specifically, we image the laser-induced demagnetization and remagnetization of thin ferrimagnetic GdFe films proceeding on a few nanoseconds timescale. Controlling the heat load on the sample via additional reflector and heatsink layers allows us to conduct destruction-free measurements at a repetition rate of 50 MHz. Near-field enhancement of the photo-excitation and controlled annealing effects lead to laterally heterogeneous magnetization dynamics which we trace with 30 nm spatial resolution. Our work opens new opportunities to study photo-induced dynamics on the nanometer scale, with access to picosecond to nanosecond time scales, which is of technological relevance, especially in the field of magnetism.

3.
Nature ; 614(7947): 256-261, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36653456

RESUMEN

Fluctuations and stochastic transitions are ubiquitous in nanometre-scale systems, especially in the presence of disorder. However, their direct observation has so far been impeded by a seemingly fundamental, signal-limited compromise between spatial and temporal resolution. Here we develop coherent correlation imaging (CCI) to overcome this dilemma. Our method begins by classifying recorded camera frames in Fourier space. Contrast and spatial resolution emerge by averaging selectively over same-state frames. Temporal resolution down to the acquisition time of a single frame arises independently from an exceptionally low misclassification rate, which we achieve by combining a correlation-based similarity metric1,2 with a modified, iterative hierarchical clustering algorithm3,4. We apply CCI to study previously inaccessible magnetic fluctuations in a highly degenerate magnetic stripe domain state with nanometre-scale resolution. We uncover an intricate network of transitions between more than 30 discrete states. Our spatiotemporal data enable us to reconstruct the pinning energy landscape and to thereby explain the dynamics observed on a microscopic level. CCI massively expands the potential of emerging high-coherence X-ray sources and paves the way for addressing large fundamental questions such as the contribution of pinning5-8 and topology9-12 in phase transitions and the role of spin and charge order fluctuations in high-temperature superconductivity13,14.

4.
J Synchrotron Radiat ; 29(Pt 6): 1454-1464, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36345754

RESUMEN

The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented. The experimental capabilities that the SCS instrument offers, resulting from the operation at megahertz repetition rates and the availability of the novel DSSC 2D imaging detector, are illustrated. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range.


Asunto(s)
Holografía , Rayos Láser , Rayos X , Radiografía
5.
Opt Express ; 30(21): 38424-38438, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36258408

RESUMEN

Soft-x-ray holography which utilizes an optics mask fabricated in direct contact with the sample, is a widely applied x-ray microscopy method, in particular, for investigating magnetic samples. The optics mask splits the x-ray beam into a reference wave and a wave to illuminate the sample. The reconstruction quality in such a Fourier-transform holography experiment depends primarily on the characteristics of the reference wave, typically emerging from a small, high-aspect-ratio pinhole in the mask. In this paper, we study two commonly used reference geometries and investigate how their 3D structure affects the reconstruction within an x-ray Fourier holography experiment. Insight into these effects is obtained by imaging the exit waves from reference pinholes via high-resolution coherent diffraction imaging combined with three-dimensional multislice simulations of the x-ray propagation through the reference pinhole. The results were used to simulate Fourier-transform holography experiments to determine the spatial resolution and precise location of the reconstruction plane for different reference geometries. Based on our findings, we discuss the properties of the reference pinholes with view on application in soft-x-ray holography experiments.

6.
Nano Lett ; 22(10): 4028-4035, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35577328

RESUMEN

Magnetic skyrmions are quasiparticles with nontrivial topology, envisioned to play a key role in next-generation data technology while simultaneously attracting fundamental research interest due to their emerging topological charge. In chiral magnetic multilayers, current-generated spin-orbit torques or ultrafast laser excitation can be used to nucleate isolated skyrmions on a picosecond time scale. Both methods, however, produce randomly arranged skyrmions, which inherently limits the precision on the location at which the skyrmions are nucleated. Here, we show that nanopatterning of the anisotropy landscape with a He+-ion beam creates well-defined skyrmion nucleation sites, thereby transforming the skyrmion localization into a deterministic process. This approach allows control of individual skyrmion nucleation as well as guided skyrmion motion with nanometer-scale precision, which is pivotal for both future fundamental studies of skyrmion dynamics and applications.

7.
Eur J Health Law ; 29(1): 131-149, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35303728

RESUMEN

There is a long-established claim that emergency action through the law is impossible, or bound to be ineffective. This article seeks to challenge this position by reference to the response of many European states to the Coronavirus pandemic and by drawing on Lon Fuller's theory of law. It argues that there are a number of reasons why a fragmentation of governance between ordinary, legal action and emergency, extra-legal action is neither necessary nor desirable in this specific context. In societies that are generally rule of law compliant governance according to formal legal principles is not only constraining, it also possesses the quality of a 'liberating limitation', creating the room for effective, sustainable action. Too little has been made of this positive dimension of the legal form as an instrument for emergency action.


Asunto(s)
Urgencias Médicas , Salud Pública , Humanos , Pandemias/prevención & control
9.
Sci Adv ; 7(33)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34380611

RESUMEN

Solid-state systems can host a variety of thermodynamic phases that can be controlled with magnetic fields, strain, or laser excitation. Many phases that are believed to exhibit exotic properties only exist on the nanoscale, coexisting with other phases that make them challenging to study, as measurements require both nanometer spatial resolution and spectroscopic information, which are not easily accessible with traditional x-ray spectromicroscopy techniques. Here, we use coherent diffractive imaging spectroscopy (CDIS) to acquire quantitative hyperspectral images of the prototypical quantum material vanadium oxide across the vanadium L 2,3 and oxygen K x-ray absorption edges with nanometer-scale resolution. We extract the full complex refractive indices of the monoclinic insulating and rutile conducting phases of VO2 from a single sample and find no evidence for correlation-driven phase transitions. CDIS will enable quantitative full-field x-ray spectromicroscopy for studying phase separation in time-resolved experiments and other extreme sample environments where other methods cannot operate.

10.
Nat Mater ; 20(1): 30-37, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33020615

RESUMEN

Topological states of matter exhibit fascinating physics combined with an intrinsic stability. A key challenge is the fast creation of topological phases, which requires massive reorientation of charge or spin degrees of freedom. Here we report the picosecond emergence of an extended topological phase that comprises many magnetic skyrmions. The nucleation of this phase, followed in real time via single-shot soft X-ray scattering after infrared laser excitation, is mediated by a transient topological fluctuation state. This state is enabled by the presence of a time-reversal symmetry-breaking perpendicular magnetic field and exists for less than 300 ps. Atomistic simulations indicate that the fluctuation state largely reduces the topological energy barrier and thereby enables the observed rapid and homogeneous nucleation of the skyrmion phase. These observations provide fundamental insights into the nature of topological phase transitions, and suggest a path towards ultrafast topological switching in a wide variety of materials through intermediate fluctuating states.

11.
Phys Rev Lett ; 125(12): 127201, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-33016712

RESUMEN

We systematically study the fluence dependence of the resonant scattering cross-section from magnetic domains in Co/Pd-based multilayers. Samples are probed with single extreme ultraviolet (XUV) pulses of femtosecond duration tuned to the Co M_{3,2} absorption resonances using the FERMI@Elettra free-electron laser. We report quantitative data over 3 orders of magnitude in fluence, covering 16 mJ/cm^{2}/pulse to 10 000 mJ/cm^{2}/pulse with pulse lengths of 70 fs and 120 fs. A progressive quenching of the diffraction cross-section with fluence is observed. Compression of the same pulse energy into a shorter pulse-implying an increased XUV peak electric field-results in a reduced quenching of the resonant diffraction at the Co M_{3,2} edge. We conclude that the quenching effect observed for resonant scattering involving the short-lived Co 3p core vacancies is noncoherent in nature. This finding is in contrast to previous reports investigating resonant scattering involving the longer-lived Co 2p states, where stimulated emission has been found to be important. A phenomenological model based on XUV-induced ultrafast demagnetization is able to reproduce our entire set of experimental data and is found to be consistent with independent magneto-optical measurements of the demagnetization dynamics on the same samples.

12.
Ultramicroscopy ; 214: 113005, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32416436

RESUMEN

The spatial resolution of microscopic images acquired via X-ray Fourier-transform holography is limited by the source size of the reference wave and by the numerical aperture of the detector. We analyze the interplay between both influences and show how they are matched in practice. We further identify, how high spatial frequencies translate to imaging artifacts in holographic reconstructions where mainly the reference beam limits the spatial resolution. As a solution, three methods are introduced based on numerical post-processing of the reconstruction. The methods comprise apodization of the hologram, refocusing via wave propagation, and deconvolution using the transfer function of the imaging system. In particular for the latter two, we demonstrate that image details smaller than the source size of the reference beam can be recovered up to the diffraction limit of the hologram. Our findings motivate the intentional application of a large reference-wave source enhancing the image contrast in applications with low photon numbers such as single-shot experiments at free-electron lasers or imaging at laboratory sources.

13.
Nat Nanotechnol ; 13(12): 1154-1160, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30224795

RESUMEN

Spintronics is a research field that aims to understand and control spins on the nanoscale and should enable next-generation data storage and manipulation. One technological and scientific key challenge is to stabilize small spin textures and to move them efficiently with high velocities. For a long time, research focused on ferromagnetic materials, but ferromagnets show fundamental limits for speed and size. Here, we circumvent these limits using compensated ferrimagnets. Using ferrimagnetic Pt/Gd44Co56/TaOx films with a sizeable Dzyaloshinskii-Moriya interaction, we realize a current-driven domain wall motion with a speed of 1.3 km s-1 near the angular momentum compensation temperature (TA) and room-temperature-stable skyrmions with minimum diameters close to 10 nm near the magnetic compensation temperature (TM). Both the size and dynamics of the ferrimagnet are in excellent agreement with a simplified effective ferromagnet theory. Our work shows that high-speed, high-density spintronics devices based on current-driven spin textures can be realized using materials in which TA and TM are close together.

14.
Nano Lett ; 18(6): 3449-3453, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29767985

RESUMEN

We use resonant soft X-ray holography to image the insulator-metal phase transition in vanadium dioxide with element and polarization specificity and nanometer spatial resolution. We observe that nanoscale inhomogeneity in the film results in spatial-dependent transition pathways between the insulating and metallic states. Additional nanoscale phases form in the vicinity of defects which are not apparent in the initial or final states of the system, which would be missed in area-integrated X-ray absorption measurements. These intermediate phases are vital to understand the phase transition in VO2, and our results demonstrate how resonant imaging can be used to understand the electronic properties of phase-separated correlated materials obtained by X-ray absorption.

15.
Nat Commun ; 9(1): 214, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29335602

RESUMEN

Free-electron lasers (FELs) in the extreme ultraviolet (XUV) and X-ray regime opened up the possibility for experiments at high power densities, in particular allowing for fluence-dependent absorption and scattering experiments to reveal non-linear light-matter interactions at ever shorter wavelengths. Findings of such non-linear effects are met with tremendous interest, but prove difficult to understand and model due to the inherent shot-to-shot fluctuations in photon intensity and the often structured, non-Gaussian spatial intensity profile of a focused FEL beam. Presently, the focused beam is characterized and optimized separately from the actual experiment. Here, we present the simultaneous measurement of XUV diffraction signals from solid samples in tandem with the corresponding single-shot spatial fluence distribution on the actual sample. Our in situ characterization scheme enables direct monitoring of the sample illumination, providing a basis to optimize and quantitatively understand FEL experiments.


Asunto(s)
Electrones , Rayos Láser , Compuestos de Silicona , Rayos Ultravioleta , Dicroismo Circular , Cobalto , Platino (Metal) , Rayos X
16.
Rev Sci Instrum ; 88(10): 103701, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29092481

RESUMEN

We present a general approach to thin bulk samples to transparency for experiments in the soft x-ray and extreme ultraviolet spectral range. The method relies on mechanical grinding followed by focused-ion-beam milling. It results in a uniformly thin area of high surface quality, suitable for nanoscale imaging in transmission. In a proof-of-principle experiment, nanoscale magnetic bits on a commercial hard drive glass disk are imaged with a spatial resolution below 30 nm by soft x-ray spectro-holography. Furthermore, we demonstrate imaging of a lithographically patterned test object via absorption contrast. Our approach is suitable for both amorphous and crystalline substrates and has been tested for a variety of common epitaxy growth substrates. Lateral thinning areas in excess of 100 µm2 and a remaining substrate thickness as thin as 150 nm are easily achievable. Our approach allows preserving a previously grown thin film, and from nanofocus electron diffraction, we find no evidence for morphological changes induced by the process, in agreement with numerical simulations of the ion implantation depth distributon. We expect our method to be widely applicable and especially useful for nanoscale imaging of epitaxial thin films.

17.
Nat Nanotechnol ; 12(11): 1040-1044, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28967891

RESUMEN

Magnetic skyrmions are stabilized by a combination of external magnetic fields, stray field energies, higher-order exchange interactions and the Dzyaloshinskii-Moriya interaction (DMI). The last favours homochiral skyrmions, whose motion is driven by spin-orbit torques and is deterministic, which makes systems with a large DMI relevant for applications. Asymmetric multilayers of non-magnetic heavy metals with strong spin-orbit interactions and transition-metal ferromagnetic layers provide a large and tunable DMI. Also, the non-magnetic heavy metal layer can inject a vertical spin current with transverse spin polarization into the ferromagnetic layer via the spin Hall effect. This leads to torques that can be used to switch the magnetization completely in out-of-plane magnetized ferromagnetic elements, but the switching is deterministic only in the presence of a symmetry-breaking in-plane field. Although spin-orbit torques led to domain nucleation in continuous films and to stochastic nucleation of skyrmions in magnetic tracks, no practical means to create individual skyrmions controllably in an integrated device design at a selected position has been reported yet. Here we demonstrate that sub-nanosecond spin-orbit torque pulses can generate single skyrmions at custom-defined positions in a magnetic racetrack deterministically using the same current path as used for the shifting operation. The effect of the DMI implies that no external in-plane magnetic fields are needed for this aim. This implementation exploits a defect, such as a constriction in the magnetic track, that can serve as a skyrmion generator. The concept is applicable to any track geometry, including three-dimensional designs.

18.
Rev Sci Instrum ; 88(5): 053903, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28571434

RESUMEN

A new device for polarization control at the free electron laser facility FLASH1 at DESY has been commissioned for user operation. The polarizer is based on phase retardation upon reflection off metallic mirrors. Its performance is characterized in three independent measurements and confirms the theoretical predictions of efficient and broadband generation of circularly polarized radiation in the extreme ultraviolet spectral range from 35 eV to 90 eV. The degree of circular polarization reaches up to 90% while maintaining high total transmission values exceeding 30%. The simple design of the device allows straightforward alignment for user operation and rapid switching between left and right circularly polarized radiation.

19.
J Nanobiotechnology ; 15(1): 21, 2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28327151

RESUMEN

BACKGROUND: Quantification of nanoparticle (NP) uptake in cells or tissues is very important for safety assessment. Often, electron microscopy based approaches are used for this purpose, which allow imaging at very high resolution. However, precise quantification of NP numbers in cells and tissues remains challenging. The aim of this study was to present a novel approach, that combines precise quantification of NPs in individual cells together with high resolution imaging of their intracellular distribution based on focused ion beam/ scanning electron microscopy (FIB/SEM) slice and view approaches. RESULTS: We quantified cellular uptake of 75 nm diameter citrate stabilized silver NPs (Ag 75 Cit) into an individual human macrophage derived from monocytic THP-1 cells using a FIB/SEM slice and view approach. Cells were treated with 10 µg/ml for 24 h. We investigated a single cell and found in total 3138 ± 722 silver NPs inside this cell. Most of the silver NPs were located in large agglomerates, only a few were found in clusters of fewer than five NPs. Furthermore, we cross-checked our results by using inductively coupled plasma mass spectrometry and could confirm the FIB/SEM results. CONCLUSIONS: Our approach based on FIB/SEM slice and view is currently the only one that allows the quantification of the absolute dose of silver NPs in individual cells and at the same time to assess their intracellular distribution at high resolution. We therefore propose to use FIB/SEM slice and view to systematically analyse the cellular uptake of various NPs as a function of size, concentration and incubation time.


Asunto(s)
Macrófagos/metabolismo , Nanopartículas del Metal/química , Plata/farmacocinética , Línea Celular , Tomografía con Microscopio Electrónico , Humanos , Espectrometría de Masas , Microscopía Electrónica de Rastreo , Tamaño de la Partícula
20.
Struct Dyn ; 4(1): 014301, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28289691

RESUMEN

We present an element specific and spatially resolved view of magnetic domains in Co/Pt heterostructures in the extreme ultraviolet spectral range. Resonant small-angle scattering and coherent imaging with Fourier-transform holography reveal nanoscale magnetic domain networks via magnetic dichroism of Co at the M2,3 edges as well as via strong dichroic signals at the O2,3 and N6,7 edges of Pt. We demonstrate for the first time simultaneous, two-color coherent imaging at a free-electron laser facility paving the way for a direct real space access to ultrafast magnetization dynamics in complex multicomponent material systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...