Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 201: 105901, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685232

RESUMEN

Plant diseases caused by Pseudomonas syringae are essentially controlled in the field with the use of copper-based products and antibiotics, raising environmental and safety concerns. Antimicrobial peptides (AMPs) derived from fungi may represent a sustainable alternative to those chemicals. Trichogin GA IV, a non-ribosomal, 11-residue long AMP naturally produced by the fungus Trichoderma longibrachiatum has the ability to insert into phospholipidic membranes and form water-filled pores, thereby perturbing membrane integrity and permeability. In previous studies, peptide analogs modified at the level of specific residues were designed to be water-soluble and active against plant pathogens. Here, we studied the role of glycine-to-lysine substitutions and of the presence of a C-terminal leucine amide on bioactivity against Pseudomonas syringae bacteria. P. syringae diseases affect a wide range of crops worldwide, including tomato and kiwifruit. Our results show that trichogin GA IV analogs containing two or three Gly-to-Lys substitutions are highly effective in vitro against P. syringae pv. tomato (Pst), displaying minimal inhibitory and minimal bactericidal concentrations in the low micromolar range. The same analogs are also able to inhibit in vitro the kiwifruit pathogen P. syringae pv. actinidiae (Psa) biovar 3. When sprayed on tomato plants 24 h before Pst inoculation, only tri-lysine containing analogs were able to significantly reduce bacterial titers and symptom development in infected plants. Our results point to a positive correlation between the number of lysine substitutions and the antibacterial activity. This correlation was supported by microscopy analyses performed with mono-, di- and tri-Lys containing analogs that showed a different degree of interaction with Pst cells and ultrastructural changes that culminated in cell lysis.


Asunto(s)
Antibacterianos , Lisina , Pseudomonas syringae , Pseudomonas syringae/efectos de los fármacos , Lisina/química , Lisina/farmacología , Antibacterianos/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Peptaiboles/farmacología , Peptaiboles/química , Pruebas de Sensibilidad Microbiana , Oligopéptidos/farmacología , Oligopéptidos/química , Solanum lycopersicum/microbiología
2.
Molecules ; 27(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36364348

RESUMEN

We present a new photoswitchable spin label for light-induced pulsed electron paramagnetic resonance dipolar spectroscopy (LiPDS), the photoexcited triplet state of erythrosin B (EB), which is ideal for biological applications. With this label, we perform an in-depth study of the orientational effects in dipolar traces acquired using the refocused laser-induced magnetic dipole technique to obtain information on the distance and relative orientation between the EB and nitroxide labels in a rigid model peptide, in good agreement with density functional theory predictions. Additionally, we show that these orientational effects can be averaged to enable an orientation-independent analysis to determine the distance distribution. Furthermore, we demonstrate the feasibility of these experiments above liquid nitrogen temperatures, removing the need for expensive liquid helium or cryogen-free cryostats. The variety of choices in photoswitchable spin labels and the affordability of the experiments are critical for LiPDS to become a widespread methodology in structural biology.


Asunto(s)
Eritrosina , Espectroscopía de Resonancia por Spin del Electrón/métodos , Marcadores de Spin , Temperatura
3.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34445069

RESUMEN

Peptaibols, by disturbing the permeability of phospholipid membranes, can overcome anticancer drug resistance, but their natural hydrophobicity hampers their administration. By a green peptide synthesis protocol, we produced two water-soluble analogs of the peptaibol trichogin GA IV, termed K6-Lol and K6-NH2. To reduce production costs, we successfully explored the possibility of changing the naturally occurring 1,2-aminoalcohol leucinol to a C-terminal amide. Peptaibol activity was evaluated in ovarian cancer (OvCa) and Hodgkin lymphoma (HL) cell lines. Peptaibols exerted comparable cytotoxic effects in cancer cell lines that were sensitive-and had acquired resistance-to cisplatin and doxorubicin, as well as in the extrinsic-drug-resistant OvCa 3-dimensional spheroids. Peptaibols, rapidly taken up by tumor cells, deeply penetrated and killed OvCa-spheroids. They led to cell membrane permeabilization and phosphatidylserine exposure and were taken up faster by cancer cells than normal cells. They were resistant to proteolysis and maintained a stable helical structure in the presence of cancer cells. In conclusion, these promising results strongly point out the need for further preclinical evaluation of our peptaibols as new anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Doxorrubicina/farmacología , Enfermedad de Hodgkin/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Peptaiboles/farmacología , Antineoplásicos/química , Resistencia a Antineoplásicos , Femenino , Enfermedad de Hodgkin/patología , Humanos , Neoplasias Ováricas/patología , Peptaiboles/química , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Células Tumorales Cultivadas
4.
Int J Mol Sci ; 21(20)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053906

RESUMEN

Fungal species belonging to the Trichoderma genus are commonly used as biocontrol agents against several crop pathogens. Among their secondary metabolites, peptaibols are helical, antimicrobial peptides, which are structurally stable even under extreme pH and temperature conditions. The promise of peptaibols as agrochemicals is, however, hampered by poor water solubility, which inhibits efficient delivery for practical use in crop protection. Using a versatile synthetic strategy, based on green chemistry procedures, we produced water-soluble analogs of the short-length peptaibol trichogin. Although natural trichogin was inactive against the tested fungal plant pathogens (Botrytis cinerea, Bipolaris sorokiniana, Fusarium graminearum, and Penicillium expansum), three analogs completely inhibited fungal growth at low micromolar concentrations. The most effective peptides significantly reduced disease symptoms by B. cinerea on common bean and grapevine leaves and ripe grape berries without visible phytotoxic effects. An in-depth conformational analysis featuring a 3D-structure-activity relationship study indicated that the relative spatial position of cationic residues is crucial for increasing peptide fungicidal activity.


Asunto(s)
Sustitución de Aminoácidos/efectos de los fármacos , Antifúngicos/farmacología , Botrytis/efectos de los fármacos , Peptaiboles/genética , Peptaiboles/farmacología , Enfermedades de las Plantas/microbiología , Trichoderma/genética , Antifúngicos/química , Interacciones Hidrofóbicas e Hidrofílicas , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Peptaiboles/química , Conformación Proteica , Proteolisis , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...