Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 186(19): 4204-4215.e19, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37557170

RESUMEN

Tn7-like transposons have co-opted CRISPR-Cas systems to facilitate the movement of their own DNA. These CRISPR-associated transposons (CASTs) are promising tools for programmable gene knockin. A key feature of CASTs is their ability to recruit Tn7-like transposons to nuclease-deficient CRISPR effectors. However, how Tn7-like transposons are recruited by diverse CRISPR effectors remains poorly understood. Here, we present the cryo-EM structure of a recruitment complex comprising the Cascade complex, TniQ, TnsC, and the target DNA in the type I-B CAST from Peltigera membranacea cyanobiont 210A. Target DNA recognition by Cascade induces conformational changes in Cas6 and primes TniQ recruitment through its C-terminal domain. The N-terminal domain of TniQ is bound to the seam region of the TnsC spiral heptamer. Our findings provide insights into the diverse mechanisms for the recruitment of Tn7-like transposons to CRISPR effectors and will aid in the development of CASTs as gene knockin tools.


Asunto(s)
Ascomicetos , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Elementos Transponibles de ADN , Técnicas de Sustitución del Gen , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/ultraestructura , Microscopía por Crioelectrón , Ascomicetos/química , Ascomicetos/metabolismo , Ascomicetos/ultraestructura
2.
Nat Commun ; 13(1): 5449, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114186

RESUMEN

Accurate segregation of chromosomes during mitosis depends on the correct assembly of the mitotic spindle, a bipolar structure composed mainly of microtubules. The augmin complex, or homologous to augmin subunits (HAUS) complex, is an eight-subunit protein complex required for building robust mitotic spindles in metazoa. Augmin increases microtubule density within the spindle by recruiting the γ-tubulin ring complex (γ-TuRC) to pre-existing microtubules and nucleating branching microtubules. Here, we elucidate the molecular architecture of augmin by single particle cryo-electron microscopy (cryo-EM), computational methods, and crosslinking mass spectrometry (CLMS). Augmin's highly flexible structure contains a V-shaped head and a filamentous tail, with the head existing in either extended or contracted conformational states. Our work highlights how cryo-EM, complemented by computational advances and CLMS, can elucidate the structure of a challenging protein complex and provides insights into the function of augmin in mediating microtubule branching nucleation.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Tubulina (Proteína) , Microscopía por Crioelectrón , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
3.
Nat Chem Biol ; 18(12): 1417-1424, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36163386

RESUMEN

Anti-CRISPR (Acr) proteins are encoded by phages to inactivate CRISPR-Cas systems of bacteria and archaea and are used to enhance the CRISPR toolbox for genome editing. Here we report the structure and mechanism of AcrIF24, an Acr protein that inhibits the type I-F CRISPR-Cas system from Pseudomonas aeruginosa. AcrIF24 is a homodimer that associates with two copies of the surveillance complex (Csy) and prevents the hybridization between CRISPR RNA and target DNA. Furthermore, AcrIF24 functions as an anti-CRISPR-associated (Aca) protein to repress the transcription of the acrIF23-acrIF24 operon. Alone or in complex with Csy, AcrIF24 is capable of binding to the acrIF23-acrIF24 promoter DNA with nanomolar affinity. The structure of a Csy-AcrIF24-promoter DNA complex at 2.7 Å reveals the mechanism for transcriptional suppression. Our results reveal that AcrIF24 functions as an Acr-Aca fusion protein, and they extend understanding of the diverse mechanisms used by Acr proteins.


Asunto(s)
Bacteriófagos , Proteínas Asociadas a CRISPR , Proteínas Asociadas a CRISPR/genética , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Sistemas CRISPR-Cas , Bacteriófagos/genética , Bacteriófagos/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
4.
Mol Cell ; 81(21): 4457-4466.e5, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34450043

RESUMEN

The type V-K CRISPR-Cas system, featured by Cas12k effector with a naturally inactivated RuvC domain and associated with Tn7-like transposon for RNA-guided DNA transposition, is a promising tool for precise DNA insertion. To reveal the mechanism underlying target DNA recognition, we determined a cryoelectron microscopy (cryo-EM) structure of Cas12k from cyanobacteria Scytonema hofmanni in complex with a single guide RNA (sgRNA) and a double-stranded target DNA. Coupled with mutagenesis and in vitro DNA transposition assay, our results revealed mechanisms for the recognition of the GGTT protospacer adjacent motif (PAM) sequence and the structural elements of Cas12k critical for RNA-guided DNA transposition. These structural and mechanistic insights should aid in the development of type V-K CRISPR-transposon systems as tools for genome editing.


Asunto(s)
Sistemas CRISPR-Cas , Microscopía por Crioelectrón/métodos , ADN/química , ARN Guía de Kinetoplastida , ARN/química , Secuencias de Aminoácidos , Cianobacterias , ADN/metabolismo , Edición Génica , Técnicas Genéticas , Mutagénesis , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Dominios Proteicos , Recombinación Genética
5.
Nucleic Acids Res ; 49(1): 584-594, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33332569

RESUMEN

CRISPR-Cas systems are adaptive immune systems in bacteria and archaea to defend against mobile genetic elements (MGEs) and have been repurposed as genome editing tools. Anti-CRISPR (Acr) proteins are produced by MGEs to counteract CRISPR-Cas systems and can be used to regulate genome editing by CRISPR techniques. Here, we report the cryo-EM structures of three type I-F Acr proteins, AcrIF4, AcrIF7 and AcrIF14, bound to the type I-F CRISPR-Cas surveillance complex (the Csy complex) from Pseudomonas aeruginosa. AcrIF4 binds to an unprecedented site on the C-terminal helical bundle of Cas8f subunit, precluding conformational changes required for activation of the Csy complex. AcrIF7 mimics the PAM duplex of target DNA and is bound to the N-terminal DNA vise of Cas8f. Two copies of AcrIF14 bind to the thumb domains of Cas7.4f and Cas7.6f, preventing hybridization between target DNA and the crRNA. Our results reveal structural detail of three AcrIF proteins, each binding to a different site on the Csy complex for inhibiting degradation of MGEs.


Asunto(s)
Proteínas Asociadas a CRISPR/antagonistas & inhibidores , Sistemas CRISPR-Cas , Fagos Pseudomonas/química , Pseudomonas aeruginosa/metabolismo , Proteínas Virales/química , Secuencia de Aminoácidos , Proteínas Asociadas a CRISPR/metabolismo , Microscopía por Crioelectrón , ADN Bacteriano/metabolismo , Conjuntos de Datos como Asunto , Ensayo de Cambio de Movilidad Electroforética , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas , Fagos Pseudomonas/genética , Estructuras R-Loop , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Virales/metabolismo
6.
Cell Host Microbe ; 25(6): 815-826.e4, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31155345

RESUMEN

CRISPR-Cas12a (Cpf1), a type V CRISPR-associated nuclease, provides bacterial immunity against bacteriophages and plasmids but also serves as a tool for genome editing. Foreign nucleic acids are integrated into the CRISPR locus, prompting transcription of CRISPR RNAs (crRNAs) that guide Cas12a cleavage of foreign complementary DNA. However, mobile genetic elements counteract Cas12a with inhibitors, notably type V-A anti-CRISPRs (AcrVAs). We present cryoelectron microscopy structures of Cas12a-crRNA bound to AcrVA1 and AcrVA4 at 3.5 and 3.3 Å resolutions, respectively. AcrVA1 is sandwiched between the recognition (REC) and nuclease (NUC) lobes of Cas12a and inserts into the binding pocket for the protospacer-adjacent motif (PAM), a short DNA sequence guiding Cas12a targeting. AcrVA1 cleaves crRNA in a Cas12a-dependent manner, inactivating Cas12a-crRNA complexes. The AcrVA4 dimer is anchored around the crRNA pseudoknot of Cas12a-crRNA, preventing required conformational changes for crRNA-DNA heteroduplex formation. These results uncover molecular mechanisms for CRISPR-Cas12a inhibition, providing insights into bacteria-phage dynamics.


Asunto(s)
Sistemas CRISPR-Cas , Endodesoxirribonucleasas/antagonistas & inhibidores , Endodesoxirribonucleasas/metabolismo , Inhibidores Enzimáticos/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Ribonucleasas/metabolismo , Microscopía por Crioelectrón , Endodesoxirribonucleasas/ultraestructura , Unión Proteica , Conformación Proteica , ARN Guía de Kinetoplastida/ultraestructura , Ribonucleasas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...