Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 53(8): 5041-55, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26381429

RESUMEN

Brain inflammation, a common feature in neurodegenerative diseases, is a complex series of events, which can be detrimental and even lead to neuronal death. Nonetheless, several studies suggest that inflammatory signals are also positively influencing neural cell proliferation, survival, migration, and differentiation. Recently, correlative studies suggested that astrocytes are able to dedifferentiate upon injury and may thereby re-acquire neural stem cell (NSC) potential. However, the mechanism underlying this dedifferentiation process upon injury remains unclear. Here, we report that during the early response of reactive gliosis, inflammation induces a conversion of mature astrocytes into neural progenitors. A TNF treatment induces the decrease of specific astrocyte markers, such as glial fibrillary acidic protein (GFAP) or genes related to glycogen metabolism, while a subset of these cells re-expresses immaturity markers, such as CD44, Musashi-1, and Oct4. Thus, TNF treatment results in the appearance of cells that exhibit a neural progenitor phenotype and are able to proliferate and differentiate into neurons and/or astrocytes. This dedifferentiation process is maintained as long as TNF is present in the culture medium. In addition, we highlight a role for Oct4 in this process, since the TNF-induced dedifferentiation can be prevented by inhibiting Oct4 expression. Our results show that activation of the NF-κB pathway through TNF plays an important role in the dedifferentiation of astrocytes via the re-expression of Oct4. These findings indicate that the first step of reactive gliosis is in fact a dedifferentiation process of resident astrocytes mediated by the NF-κB pathway.


Asunto(s)
Astrocitos/metabolismo , Astrocitos/patología , Inflamación/patología , FN-kappa B/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Animales , Astrocitos/efectos de los fármacos , Biomarcadores/metabolismo , Desdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Glucógeno Fosforilasa/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Células-Madre Neurales/efectos de los fármacos , Fenotipo , Esferoides Celulares/citología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
2.
J Neurosci Methods ; 207(1): 59-71, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22483759

RESUMEN

Microglia, the CNS resident macrophages, and astrocytes, the most abundant glial cell population, are both implicated in brain pathologies and can exhibit a pro-inflammatory phenotype. Microglial cells are known to rapidly and strongly react to brain insults. They will promote astrocyte activation and may lead to a vicious, self-perpetuating cycle of chronic inflammation. To obtain a better understanding of the individual role of both cell types, primary cells are frequently used in in vitro studies, but the purity of specific cell cultures remains rarely investigated. The aim of this study is to determine the effect of specific removal of microglial cells on the inflammatory properties of different glial cultures. Here, the removal of microglial contamination from mixed glial cultures to obtain astrocyte-enriched cultures was achieved using a magnetic cell sorting approach. Compared to mixed cultures, we clearly showed that these enriched cultures are only weakly activated by pro-inflammatory agents (lipopolysaccharide, interferon-γ or beta-amyloid peptide). This finding was confirmed using twice-sorted astrocyte-enriched cultures and microglia-free cultures composed of neurosphere-derived astrocytes. Thus, we present evidence that the magnitude of the pro-inflammatory response is linked to the percentage of microglia in cultures. Due to their high reactivity to various insults or pro-inflammatory stimuli, microglia-derived effects could be credited to astrocytes in mixed glial cultures. Therefore, we highlight the importance of monitoring the presence of microglia in glial cultures since they can affect the interpretation of the results, especially when inflammatory processes are studied.


Asunto(s)
Astrocitos/citología , Separación Celular/métodos , Microglía/citología , Animales , Astrocitos/inmunología , Astrocitos/metabolismo , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Microglía/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Glia ; 57(16): 1741-53, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19455581

RESUMEN

The Notch pathway is implicated in many aspects of the central nervous system (CNS) development and functions. Recently, we and others identified the Notch pathway to be involved in inflammatory events of the CNS. To understand the implication of this pathway on astrocytes, we have studied the Jagged-Notch-Hes pathway under inflammatory conditions. LPS exposure induced an upregulation of Jagged1 expression on cultured astrocytes. To address the role of Jagged1 in the modulation of inflammation, we used a siRNA mediated silencing of Jagged1 (siRNA J1). Jagged1 inhibition induced important variations on the Notch pathway components like Hes1, Hes5, Notch3, and RBP-Jkappa. siRNA J1 repressed the mRNA expression of genes known as hallmarks of the gliosis like GFAP and endothelin(B) receptor. On activated astrocytes, the inhibition of Jagged1 had antiinflammatory effects and resulted in a decrease of LPS-induced proinflammatory cytokines (IL1beta, IL1alpha, and TNFalpha) as well as the iNOS expression. The inhibition of Jagged1 induced a modulation of the JAK/STAT/SOCS signaling pathway. Most interestingly, the siRNA J1 decreased the LPS-induced translocation of NFkappaB p65 and this could be correlated to the phosphorylation of IkappaBalpha. These results suggest that during inflammatory and gliotic events of the CNS, Jagged1/Notch signaling sustains the inflammation mainly through NFkappaB and in part through JAK/STAT/SOCS signaling pathways.


Asunto(s)
Astrocitos/metabolismo , Proteínas de Unión al Calcio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Quinasas Janus/metabolismo , Proteínas de la Membrana/metabolismo , FN-kappa B/metabolismo , Factor de Transcripción STAT1/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Animales , Astrocitos/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Western Blotting , Proteínas de Unión al Calcio/genética , Células Cultivadas , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Silenciador del Gen , Gliosis/metabolismo , Proteínas de Homeodominio/metabolismo , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1 , Lipopolisacáridos/metabolismo , Lipopolisacáridos/toxicidad , Proteínas de la Membrana/genética , Óxido Nítrico/metabolismo , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , ARN Interferente Pequeño/farmacología , Ratas , Ratas Wistar , Receptor Notch1/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Serrate-Jagged , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor de Transcripción HES-1 , Transfección , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...