Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurophotonics ; 11(2): 025005, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38841422

RESUMEN

Significance: The development of genetically encoded fluorescent indicators of neural activity with millisecond dynamics has generated demand for ever faster two-photon (2P) imaging systems, but acoustic and mechanical beam scanning technologies are approaching fundamental limits. We demonstrate that potassium tantalate niobate (KTN) electro-optical deflectors (EODs), which are not subject to the same fundamental limits, are capable of ultrafast two-dimensional (2D) 2P imaging in vivo. Aim: To determine if KTN-EODs are suitable for 2P imaging, compatible with 2D scanning, and capable of ultrafast in vivo imaging of genetically encoded indicators with millisecond dynamics. Approach: The performance of a commercially available KTN-EOD was characterized across a range of drive frequencies and laser parameters relevant to in vivo 2P microscopy. A second KTN-EOD was incorporated into a dual-axis scan module, and the system was validated by imaging signals in vivo from ASAP3, a genetically encoded voltage indicator. Results: Optimal KTN-EOD deflection of laser light with a central wavelength of 960 nm was obtained up to the highest average powers and pulse intensities tested (power: 350 mW; pulse duration: 118 fs). Up to 32 resolvable spots per line at a 560 kHz line scan rate could be obtained with single-axis deflection. The complete dual-axis EO 2P microscope was capable of imaging a 13 µm by 13 µm field-of-view at over 10 kHz frame rate with ∼0.5 µm lateral resolution. We demonstrate in vivo imaging of neurons expressing ASAP3 with high temporal resolution. Conclusions: We demonstrate the suitability of KTN-EODs for ultrafast 2P cellular imaging in vivo, providing a foundation for future high-performance microscopes to incorporate emerging advances in KTN-based scanning technology.

2.
Haematologica ; 108(3): 859-869, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35615929

RESUMEN

Sickle cell disease (SCD) is the most common inherited disease. Pain is a key morbidity of SCD and opioids are the main treatment but their side effects emphasize the need for new analgesic approaches. Humanized transgenic mouse models have been instructive in understanding the pathobiology of SCD and mechanisms of pain. Homozygous (HbSS) Berkley mice express >99% human sickle hemoglobin and several features of clinical SCD including hyperalgesia. Previously, we reported that the endocannabinoid 2-arachidonoylglycerol (2-AG) is a precursor of the pro-nociceptive mediator prostaglandin E2-glyceryl ester (PGE2-G) which contributes to hyperalgesia in SCD. We now demonstrate the causal role of 2-AG in hyperalgesia in sickle mice. Hyperalgesia in HbSS mice correlated with elevated levels of 2-AG in plasma, its synthesizing enzyme diacylglycerol lipase ß (DAGLß) in blood cells, and with elevated levels of PGE2 and PGE2-G, pronociceptive derivatives of 2-AG. A single intravenous injection of 2-AG produced hyperalgesia in non-hyperalgesic HbSS mice, but not in control (HbAA) mice expressing normal human HbA. JZL184, an inhibitor of 2-AG hydrolysis, also produced hyperalgesia in non-hyperalgesic HbSS or hemizygous (HbAS) mice, but did not influence hyperalgesia in hyperalgesic HbSS mice. Systemic and intraplantar administration of KT109, an inhibitor of DAGLß, decreased mechanical and heat hyperalgesia in HbSS mice. The decrease in hyperalgesia was accompanied by reductions in 2-AG, PGE2 and PGE2-G in the blood. These results indicate that maintaining the physiological level of 2-AG in the blood by targeting DAGLß may be a novel and effective approach to treat pain in SCD.


Asunto(s)
Anemia de Células Falciformes , Hiperalgesia , Ratones , Humanos , Animales , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Dinoprostona , Dolor/tratamiento farmacológico , Dolor/etiología , Ratones Transgénicos , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/tratamiento farmacológico , Hemoglobina Falciforme
3.
Science ; 377(6604): 399-405, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35862520

RESUMEN

How locally adapted ecotypes are established and maintained within a species is a long-standing question in evolutionary biology. Using forest and prairie ecotypes of deer mice (Peromyscus maniculatus), we characterized the genetic basis of variation in two defining traits-tail length and coat color-and discovered a 41-megabase chromosomal inversion linked to both. The inversion frequency is 90% in the dark, long-tailed forest ecotype; decreases across a habitat transition; and is absent from the light, short-tailed prairie ecotype. We implicate divergent selection in maintaining the inversion at frequencies observed in the wild, despite high levels of gene flow, and explore fitness benefits that arise from suppressed recombination within the inversion. We uncover a key role for a large, previously uncharacterized inversion in the evolution and maintenance of classic mammalian ecotypes.


Asunto(s)
Inversión Cromosómica , Ecotipo , Peromyscus , Animales , Flujo Génico , Peromyscus/genética , Recombinación Genética
4.
Perception ; 48(1): 58-71, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30526345

RESUMEN

When viewing unfamiliar faces that vary in expressions, angles, and image quality, observers make many recognition errors. Specifically, in unconstrained identity-sorting tasks, observers struggle to cope with variation across different images of the same person while succeeding at telling different people apart. The use of ambient face images in this simple card-sorting task reveals the magnitude of these face recognition errors and suggests a useful platform to reexamine the nature of face processing using naturalistic stimuli. In the present study, we chose to investigate the impact of two basic stimulus manipulations (image blur and face inversion) on identity sorting with ambient images. Although these manipulations are both known to affect face processing when well-controlled, frontally viewed face images are used, examining how they affect performance for ambient images is an important step toward linking the large body of research using controlled face images to more ecologically valid viewing conditions. Briefly, we observed a high cost of image blur regardless of blur magnitude, and a strong inversion effect that affected observers' sensitivity to extrapersonal variability but did not affect the number of unique identities they estimated were present in the set of images presented to them.


Asunto(s)
Reconocimiento Facial , Estimulación Luminosa , Femenino , Humanos , Masculino
5.
Mol Biol Evol ; 33(8): 1889-901, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27189538

RESUMEN

LINE-1 (long interspersed element-1) retroelements are the only active autonomous endogenous retroelements in human genomes. Their retrotransposition activity has created close to 50% of the current human genome. Due to the apparent costs of this proliferation, host genomes have evolved multiple mechanisms to curb LINE-1 retrotransposition. Here, we investigate the evolution and function of the LINE-1 restriction factor APOBEC3A, a member of the APOBEC3 cytidine deaminase gene family. We find that APOBEC3A genes have evolved rapidly under diversifying selection in primates, suggesting changes in APOBEC3A have been recurrently selected in a host-pathogen "arms race." Nonetheless, in contrast to previous reports, we find that the LINE-1 restriction activity of APOBEC3A proteins has been strictly conserved throughout simian primate evolution in spite of its pervasive diversifying selection. Based on these results, we conclude that LINE-1s have not driven the rapid evolution of APOBEC3A in primates. In contrast to this conserved LINE-1 restriction, we find that a subset of primate APOBEC3A genes have enhanced antiviral restriction. We trace this gain of antiviral restriction in APOBEC3A to the common ancestor of a subset of Old World monkeys. Thus, APOBEC3A has not only maintained its LINE-1 restriction ability, but also evolved a gain of antiviral specificity against other pathogens. Our findings suggest that while APOBEC3A has evolved to restrict additional pathogens, only those adaptive amino acid changes that leave LINE-1 restriction unperturbed have been tolerated.


Asunto(s)
Citidina Desaminasa/genética , Elementos de Nucleótido Esparcido Largo , Proteínas/genética , Animales , Evolución Biológica , Cercopithecidae , Citidina Desaminasa/metabolismo , Evolución Molecular , Genoma Humano , Humanos , Primates , Proteínas/metabolismo , Retroelementos
6.
Ecology ; 93(9): 1994-2000, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23094370

RESUMEN

Greater resource use by diverse communities might result from species occupying complementary niches. Demonstrating niche complementarity among species is challenging, however, due to the difficulty in relating differences between species in particular traits to their use of complementary resources. Here, we overcame this obstacle by exploiting plastic foraging behavior in a community of predatory insects common on Brassica oleracea plants in Washington, USA. These predators complemented one another by partitioning foraging space, with some species foraging primarily along leaf edges and others at leaf centers. We hypothesized that emergent biodiversity effects would occur when predators partitioned foraging space on leaves, but not when spatial complementarity was dampened. Indeed, on intact leaves, edge- and center-foraging predators combined to kill more prey than any single predator species could by itself. These emergent diversity effects, however, disappeared on plants damaged by the caterpillar Plutella xylostella. Caterpillar chew-holes brought edge habitats to the center of leaves, so that all predator species could attack aphids anywhere on plants. With spatial niche differences diminished, there were no benefits of predator diversity; the most voracious single predator species killed the most aphids. Thus, caterpillar herbivory determined whether multi-predator-species effects reflected complementarity or species' individual impacts. Our study provides direct evidence for a causative relationship between niche differentiation and increased resource consumption by diverse communities, as revealed by ecological engineers that homogenize the foraging environment.


Asunto(s)
Biodiversidad , Insectos/fisiología , Animales , Brassica , Larva/fisiología , Hojas de la Planta , Dinámica Poblacional , Conducta Predatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA