Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 5230, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35347181

RESUMEN

Vascular graft surgeries are often conducted in trauma cases, which has increased the demand for scaffolds with good biocompatibility profiles. Biodegradable scaffolds resembling the extracellular matrix (ECM) of blood vessels are promising vascular graft materials. In the present study, polyurethane (PU) was blended with ECM proteins collagen and elastin (Col-El) and gelatin (Gel) to produce fibrous scaffolds by using the rotary jet spinning (RJS) technique, and their effects on in vitro properties were evaluated. Morphological and structural characterization of the scaffolds was performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Micrometric fibers with nanometric rugosity were obtained. Col-El and Gel reduced the mechanical strength and increased the hydrophilicity and degradation rates of PU. No platelet adhesion or activation was observed. The addition of proteins to the PU blend increased the viability, adhesion, and proliferation of human umbilical vein endothelial cells (HUVECs). Therefore, PU-Col-El and PU-Gel scaffolds are promising biomaterials for vascular graft applications.


Asunto(s)
Bioprótesis , Poliuretanos , Prótesis Vascular , Matriz Extracelular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Poliuretanos/química , Poliuretanos/farmacología
2.
Artif Organs ; 45(5): E113-E122, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33169400

RESUMEN

Tubular polymer scaffolds based on tissue engineering techniques have been studied as potential alternatives for vascular regeneration implants. The blood vessels of the cardiovascular system are mainly fibrous, composed of collagen (Col) and elastin (El), and its inner layer consists of endothelial cells. In this work, Col and El were combined with polyurethane (PU), a biocompatible synthetic polymer, and rotary jet spinning, a new and highly productive technique, to produce fibrous scaffolds. The scaffolds produced at 18 000 rpm presented homogeneous, bead-free, and solvent-free fibers. The blend formation between PU-Col-El was identified by chemical composition analysis and enhanced the thermal stability up to 324°C. The hydrophilic nature of the scaffold was revealed by its low contact angle. Cell viability of human umbilical vein endothelial cells with the scaffold was proven for 72 hours. The combined strategy of rotary jet spinning with a polymer blend containing Col and El was verified as an effective and promising alternative to obtain tubular scaffolds for tissue engineering on a large-scale production.


Asunto(s)
Materiales Biocompatibles/química , Prótesis Vascular , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Colágeno/química , Elastina/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ensayo de Materiales , Poliuretanos/química
3.
Nanomedicine ; 13(1): 201-208, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27720929

RESUMEN

In this work, thermoset polyurethane composites were prepared by the addition of hydroxyapatite nanoparticles using the reactants polyol polyether and an aliphatic diisocyanate. The polyol employed in this study was extracted from the Euterpe oleracea Mart. seeds from the Amazon Region of Brazil. The influence of hydroxyapatite nanoparticles on the structure and morphology of the composites was studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), the structure was evaluated by Fourier transform infrared spectroscopy (FT-IR), thermal properties were analyzed by thermogravimetry analysis (TGA), and biological properties were studied by in vitro and in vivo studies. It was found that the addition of HA nanoparticles promoted fibroblast adhesion while in vivo investigations with histology confirmed that the composites promoted connective tissue adherence and did not induce inflammation. In this manner, this study supports the further investigation of bio-based, polyurethane/hydroxyapatite composites as biocompatible scaffolds for numerous tissue engineering applications.


Asunto(s)
Durapatita/química , Nanopartículas/química , Poliuretanos/química , Ingeniería de Tejidos , Andamios del Tejido , Animales , Línea Celular , Euterpe/química , Tecnología Química Verde , Humanos , Ratones , Microscopía Electrónica de Rastreo , Semillas/química , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
4.
Mater Sci Eng C Mater Biol Appl ; 72: 113-117, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28024566

RESUMEN

Tissue Engineering proposes, among other things, tissue regeneration using scaffolds integrated with biological molecules, growth factors or cells for such regeneration. In this research, polyurethane membranes were prepared using the electrospinning technique in order to obtain membranes to be applied in Tissue Engineering, such as epithelial, drug delivery or cardiac applications. The influence of fibers on the structure and morphology of the membranes was studied using scanning electron microscopy (SEM), the structure was evaluated by Fourier transform infrared spectroscopy (FT-IR), and the thermal stability was analyzed by thermogravimetry analysis (TGA). In vitro cells attachment and proliferation was investigated by SEM, and in vitro cell viability was studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays and Live/Dead® assays. It was found that the membranes present an homogeneous morphology, high porosity, high surface area/volume ratio, it was also observed a random fiber network. The thermal analysis showed that the membrane degradation started at 254°C. In vitro evaluation of fibroblasts cells showed that fibroblasts spread over the membrane surface after 24, 48 and 72h of culture. This study supports the investigation of electrospun polyurethane membranes as biocompatible scaffolds for Tissue Engineering applications and provides some guidelines for improved biomaterials with desired properties.


Asunto(s)
Materiales Biocompatibles/química , Poliuretanos/química , Ingeniería de Tejidos , Animales , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Microscopía Electrónica de Rastreo , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Resistencia a la Tracción , Termogravimetría , Andamios del Tejido , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA