Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccine ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971664

RESUMEN

The development of effective vaccines against Hepatitis C Virus (HCV) remains a global health priority and challenge. In this study, we employed an integrative approach combining computational epitope prediction with experimental validation to identify immunogenic peptides targeting the E1 glycoprotein of HCV. In the present report, computational data from various epitope prediction algorithms such as IEDB and SYFPEITHI, followed by molecular dynamics (MD) simulations and immuno-informatics analysis is presented. Through computational screening, we identified potential epitope candidates, with QVRNSSGLY (P3) and QLFTFSPRH (P7) emerging as promising candidates. MD simulations revealed stable interactions between these epitopes and MHC molecule, further validated by free energy estimations using MMPBSA method. Immuno-informatics analysis supported these findings, showing high binding potential and immunogenicity scores for the selected peptides. Subsequent synthesis and characterization of epitope peptides confirmed their structural integrity and purity required for conducting immune activation assays. Experimental immunological assays carried out in this study involved epitope peptide induced activation of CD8 + and CD4 + T cells from healthy human subjects and HCV- recovered patients. Data from experimental validation revealed significant cytokine release upon exposure to epitope peptides, particularly TNF-a, IL-6, and GM-CSF, indicative of robust immune responses. Notably, peptides P3 and P7 exhibited the most pronounced cytokine induction profiles, underscoring their potential as vaccine candidates. Further investigations addressing the mechanism of action of these epitope peptides under preclinical and clinical settings may help in developing effective vaccine against HCV.

2.
Sci Rep ; 14(1): 9540, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664447

RESUMEN

Triple-negative breast cancer (TNBC) is a metastatic disease and a formidable treatment challenge as it does not respond to existing therapies. Epigenetic regulators play a crucial role in the progression and metastasis by modulating the expression of anti-apoptotic, pro-apoptotic markers and related miRNAs in TNBC cells. We have investigated the anti-TNBC potential of dietary flavonoid 'Apigenin' and its combination with Vorinostat on MDA-MB-231 cells. At Apigenin generated ROS, inhibited cell migration, arrested the cell cycle at subG0/G1 phases, and induced apoptotic-mediated cell death. Apigenin reduced the expression of the class-I HDACs at the transcriptomic and proteomic levels. In the immunoblotting study, Apigenin has upregulated pro-apoptotic markers and downregulated anti-apoptotic proteins. Apigenin inhibited the enzymatic activity of HDAC/DNMT and increased HAT activity. Apigenin has manifested its effect on miRNA expression by upregulating the tumor-suppressor miR-200b and downregulation oncomiR-21. Combination study reduced the growth of TNBC cells synergistically by modulating the expression of epigenetic and apoptotic regulators. Molecular docking and MD simulations explored the mechanism of catalytic inhibition of HDAC1 and HDAC3 and supported the in-vitro studies. The overall studies demonstrated an anti-TNBC potential of Apigenin and may help to design an effective strategy to treat metastatic phenotype of TNBC.


Asunto(s)
Apigenina , Apoptosis , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , MicroARNs , Neoplasias de la Mama Triple Negativas , Vorinostat , Apigenina/farmacología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Apoptosis/efectos de los fármacos , Vorinostat/farmacología , Epigénesis Genética/efectos de los fármacos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Femenino , Movimiento Celular/efectos de los fármacos , Simulación del Acoplamiento Molecular , Proliferación Celular/efectos de los fármacos
3.
Heliyon ; 9(12): e22591, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38089985

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the most devastating cancers with a high incidence and mortality rates of all cancers. Locally advanced or metastatic NSCLC patients can benefit from platinum-based chemotherapy and targeted therapy drugs. Nevertheless, primary or acquired drug resistance will result in ineffective treatment, leading to tumor progression. The detailed mechanism underlying drug resistance to NSCLC are complicated and result from various factor. Among them, long noncoding RNAs (lncRNAs) have been found to be critically involved in NSCLC development and play a vital role in mediating therapy resistance. In this review, we attempt to systematically summarize the mechanisms underlying the lncRNA-mediated resistance to chemotherapy agents and targeted therapy drugs against lung cancer.

4.
J Tradit Complement Med ; 13(6): 611-622, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38020554

RESUMEN

Background: Leishmaniasis is endemic in more than 60 countries with a large number of mortality cases. The current chemotherapy approaches employed for managing the leishmaniasis is associated with severe side effects. Therefore there is a need to develop effective, safe, and cost affordable antileishmanial drug candidates. Purpose of the study: This study was designed to evaluate the in vitro antileishmanial activity of a Prosopis juliflora leaves extract (PJLME) towards the Leishmania donovani parasites. Material and methods: PJLME was evaluated for its cytotoxicity against the L. donovani parasites and the mouse macrophage cells. Further, various in vitro experiments like ROS assay, mitochondrial membrane potential assay, annexin v assay, cell cycle assay, and caspase 3/7 assay were performed to understand the mechanism of cell death. Phytochemical profiling of P. juliflorawas performed by utilizing HPTLC and GC-MS analysis. Results: PJLME demonstrated antileishmanial activity at a remarkably lower concentration of IC50 6.5 µg/mL. Of note, interestingly PJLME IC50 concentration has not demonstrated cytotoxicity against the mouse macrophage cell line. Performed experiments confirmed ROS inducing potential of PJLME which adversely affected the mitochondrial membrane potential and caused loss of mitochondrial membrane potential and thereby ATP levels. PJLME also arrested the cell cycle and induced apoptotic-like cell death in PJLME treated L. donovani promastigotes. Conclusion: The results clearly established the significance of Prosopis juliflora as an effective and safe natural resource for managing visceral leishmaniasis. The findings can be used as a baseline reference for developing novel leads/formulations for effective management of visceral leishmaniasis.

5.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189020, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951481

RESUMEN

Targeting angiogenesis has remained one of the important aspects in disease biology in general and cancer in particular. Currently (June 2023), over 593 clinical trials have been registered at ClinicalTrials.gov having inference of term 'angiogenesis'. A panel of 14 anti-angiogenic drugs have been approved by FDA for the treatment of variety of cancers and other human ailments. Although the anti-angiogenic therapy (AAT) has gained significant clinical attention as a promising approach in the treatment of various diseases, particularly cancer, however, sizable literature has accumulated in the recent past describing the aggressive nature of tumours after the drug holidays, evolving drug resistance and off-target toxicities. Nevertheless, the emergence of inscrutable compensatory or alternative angiogenic mechanisms is limiting the efficacy of anti-angiogenic drugs and focussing the therapeutic regime as a puzzle of 'Lernaean hydra'. This review offers an overview of recent updates on the efficacy of antiangiogenic therapy and the current clinical performance of aaRTK inhibitors. Additionally, it also explores the changing application landscape of AAT, focusing on its role in diabetic nephropathy, age-related macular degeneration and other neovascular ocular disorders. Combination therapy with antiangiogenic drugs and immune check point inhibitors (ICIs) has emerged as a potential strategy to enhance the therapeutic index of cancer immunotherapy. While clinical studies have demonstrated the clinical efficacy of this approach, they also highlight the complex and sometimes unpredictable adverse events associated with it. Normalizing tumour vasculature has been identified as a key factor in unlocking the full potential of ICIs, thereby providing hope for improved treatment outcomes. The future prospects and challenges of AAT have been described with special reference to integration of technological advances for enhancing its efficacy and applications beyond its discovery.


Asunto(s)
Inhibidores de la Angiogénesis , Neoplasias , Humanos , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/irrigación sanguínea , Inmunoterapia , Terapia Combinada , Resultado del Tratamiento
6.
Chem Biodivers ; 20(11): e202300799, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37702285

RESUMEN

Pyrazolic hybrids appended with naphthalene, p-chlorobenzene, o-phenol and toluene have been synthesized using Claisen Schmidt condensation reaction of 1-benzyl-3,5-dimethyl-1H-pyrazole-4-carbaldehyde. All compounds were characterized by various spectroscopic techniques. Compound (E)-3-(1-benzyl-3,5-dimethyl-1H-pyrazol-4-yl)-1-(4-chlorophenyl)prop-2-en-1-one crystallizes in monoclinic crystal system with C2/c space group. These synthesized compounds were tested for cytotoxic activity and among these compounds 4b and 5a shows prominent cytotoxic activity against triple-negative breast cancer (TNBC) cells MDA-MB-231 with IC50 values 47.72 µM and 24.25 µM, respectively. Distinguishing morphological changes were noticed in MDA-MB-231 cells treated with pyrazole hybrids contributing to apoptosis action. To get more insight into cytotoxic activity, in silico molecular docking of these compounds were performed and the results suggested that (E)-3-(1-benzyl-3,5-dimethyl-1H-pyrazol-4-yl)-1-(p-tolyl)prop-2-en-1-one and 1-(1'-benzyl-5-(4-chlorophenyl)-3',5'-dimethyl-3,4-dihydro-1'H,2H-[3,4'-bipyrazol]-2-yl)ethan-1-one binds to the prominent domain of Akt2 indicating their potential ability as Akt2 inhibitor. Moreover, from in silico ADME studies clearly demonstrated that these compounds may be regarded as a drug candidate for sub-lingual absorption based on log p values (2.157-4.924). These compounds also show promising antitubercular activity. The overall results suggest that pyrazolic hybrids with substitution at less sterically hindered positions have appealing potent cytotoxic activity and antituberculosis activity due to which they may act as multidrug candidate.


Asunto(s)
Antineoplásicos , Células MDA-MB-231 , Simulación del Acoplamiento Molecular , Estructura Molecular , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Pirazoles/farmacología , Pirazoles/química , Relación Estructura-Actividad
7.
Sci Rep ; 13(1): 9952, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37336927

RESUMEN

Modifications in the epigenetic landscape have been considered a hallmark of cancer. Histone deacetylation is one of the crucial epigenetic modulations associated with the aggressive progression of various cancer subtypes. Herein, we have repurposed the neprilysin inhibitor sacubitrilat as a potent anticancer agent using in-silico protein-ligand interaction profiler (PLIP) analysis, molecular docking, and in vitro studies. The screening of PLIP profiles between vorinostat/panobinostat and HDACs/LTA4H followed by molecular docking resulted in five (Sacubitrilat, B65, BDS, BIR, and NPV) FDA-approved, experimental and investigational drugs. Sacubitrilat has demonstrated promising anticancer activity against colorectal cancer (SW-480) and triple-negative breast cancer (MDA-MB-231) cells, with IC50 values of 14.07 µg/mL and 23.02 µg/mL, respectively. FACS analysis revealed that sacubitrilat arrests the cell cycle at the G0/G1 phase and induces apoptotic-mediated cell death in SW-480 cells. In addition, sacubitrilat inhibited HDAC isoforms at the transcriptomic level by 0.7-0.9 fold and at the proteomic level by 0.5-0.6 fold as compared to the control. Sacubitrilat increased the protein expression of tumor-suppressor (p53) and pro-apoptotic makers (Bax and Bid) by 0.2-2.5 fold while decreasing the expression of anti-apoptotic Bcl2 and Nrf2 proteins by 0.2-0.5 fold with respect to control. The observed cleaved PARP product indicates that sacubitrilat induces apoptotic-mediated cell death. This study may pave the way to identify the anticancer potential of sacubitrilat and can be explored in human clinical trials.


Asunto(s)
Antineoplásicos , Epigénesis Genética , Neprilisina , Humanos , Antineoplásicos/farmacología , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Proliferación Celular , Reposicionamiento de Medicamentos , Simulación del Acoplamiento Molecular , Neprilisina/antagonistas & inhibidores , Proteómica
8.
Cancer Biol Med ; 20(6)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37282627

RESUMEN

Prostate cancer, one of the most frequently occurring cancers in men, is a heterogeneous disease involving multiple cell types within tumors. This tumor heterogeneity at least partly results from genomic instability leading to sub-clonal cellular differentiation. The differentiated cell populations originate from a small subset of cells with tumor-initiating and stem-like properties. These cells, termed prostate cancer stem cells (PCSCs), play crucial roles in disease progression, drug resistance, and relapse. This review discusses the origin, hierarchy, and plasticity of PCSCs; methods for isolation and enrichment of PCSCs; and various cellular and metabolic signaling pathways involved in PCSC induction and maintenance, as well as therapeutic targeting.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/genética , Diferenciación Celular , Transducción de Señal , Progresión de la Enfermedad , Células Madre Neoplásicas/patología
9.
J Ethnopharmacol ; 312: 116472, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37062530

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Prosopis juliflora (Sw.), DC is a xerophytic plant species that extensively grow in Asia, Africa, Australia, and Brazil. From ancient time P. juliflora is being utilized in various folk remedies for example in wound healing, fever, inflammation, measles, excrescences, diarrhea and dysentery. Traditionally, gum, paste, and smoke obtained from the leaves and pods are applied for anticancer, antidiabetic, anti-inflammatory, and antimicrobial purposes. AIM OF THE STUDY: Our previous studies have demonstrated the promising potential of Prosopis Juliflora leaves methanol extract (PJLME) against breast cancer, and suggested its possible integration as a complementary medicine for the effective management of breast cancer. However, evidence against how PJLME mechanistically target the cancer proliferative pathways and other targets is poorly understood. The basic aim of the present study was to understand the anti-melanoma potential of PJLME against B16f10 cells with possible mechanisms of action. MATERIALS AND METHODS: MTT assay was used to determine cell viability. Wound and transwell migration assay was performed to check migration potential of cells after PJLME treatment, while clonogenic assay was carried out to understand its colony inhibition actvity. Flow cytometry was used to perform annexin V/PI assay (apoptosis assay), ROS assay, cell cycle analysis. In-vitro angiogenesis assay was performed to check formation of capillary like vascular structure after PJLME treatment. Apoptotic genes, signaling pathways markers, EMT markers and stem cell markers were determined by western blotting. In-vivo BALB/C mice xenograft model study was performed to check the effect of PJLME on in-vivo melanoma tumor growth. RESULTS: The experimental outcome of the present study has clearly demonstrated the inhibition of growth, migration, invasion, colony formation and apoptosis inducing potential of PJLME against mouse melanoma cancer cells. Treatment of B16F10 melanoma cells with PJLME resulted in arrest of cell cycle at G0/G1 phase. Annexin V-FITC/PI assay confirmed the apoptosis inducing potential of PJLME in B16F10 and A375 melanoma cells. Furthermore, Western blot experiments confirmed that the treatment of PJLME downregulates the expression of anti-apoptotic gene like Bcl2 and increase the expression profile of pro-apoptotic genes like Bax, Bad, and Bak in B16F10 melanoma cells. HUVEC (Human umbilical vein endothelial cells) tube formation assay clearly demonstrated the anti-angiogenic potential of PJLME. The study also revealed that PJLME has potential to inhibit the Akt and Erk signaling pathways which are participating in cancer cell proliferation, migration, invasion etc. The outcome of qRT-PCR and immunoblotting analysis clearly unveiled that PJLME treatment leads to downregulation of epithelial-mesenchymal transition (EMT) as well as stem cell markers. Finally, the in-vivo animal xenograft model study also revealed the anti-melanoma potential of PJLME by significantly inhibiting the B16F10 melanoma tumor growth in BALB/c mice model. The LC-ESI-MS/MS analysis of PJLME showed the presence of variety of bioactive molecules associated with anticancer effects. CONCLUSION: The outcome of the present investigation clearly demonstrated the anti-melanoma potential of PJLME against B16f10 melanoma cells. PJLME can be explored as an adjuvant or complementary therapy against melanoma cancer, however further studies are required to understand the clinical efficacy of PJLME. Nevertheless, it can be further explored as a promising resource for identification of novel anticancer candidate drug.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Melanoma , Prosopis , Animales , Ratones , Humanos , Femenino , Transición Epitelial-Mesenquimal , Células Endoteliales/metabolismo , Espectrometría de Masas en Tándem , Línea Celular Tumoral , Ratones Endogámicos BALB C , Melanoma/tratamiento farmacológico , Transducción de Señal , Antineoplásicos/farmacología , Proliferación Celular , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Células Madre/metabolismo , Movimiento Celular
10.
Drug Discov Today ; 28(5): 103537, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36801375

RESUMEN

Of the many multidrug resistance (MDR) mechanisms, the ATP binding cassette (ABC) transporters expelling drug molecules out of cells is a major culprit in limiting the efficacy of present-day anticancer drugs. The present review offers an updated information on structure, function, and regulatory mechanisms of major MDR related ABC transporters such as P-glycoprotein, MRP1, BCRP and effect of modulators on their functions. An attempt has been made to provide a focused information on different modulators of ABC transporters so as utilize them in clinical practice for amelioration of emerging MDR crisis in cancer treatment. Finally, the importance ABC transporters as therapeutic targets has been discussed in the light of future strategic planning for translating the ABC transporter inhibitors in clinical practice.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/uso terapéutico , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Resistencia a Antineoplásicos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/farmacología , Proteínas de Neoplasias/uso terapéutico , Resistencia a Múltiples Medicamentos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Adenosina Trifosfato
11.
Drug Resist Updat ; 63: 100851, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35810716

RESUMEN

Breast cancer is one of the most prevalent cancers in women and a leading cause of mortality. As per the GLOBCAN report of 2021, breast cancer has surpassed lung cancer which until recently was the most commonly diagnosed cancer. Despite significant efforts to improve early detection and therapeutic efficacy of breast cancer, the frequent emergence of drug resistance remains the predominant basis for the poor prognosis of cancer patients harboring various malignancies. Long non-coding RNA (lncRNAs) are known to affect a variety of components of genome function, including epigenetics, gene transcription, splicing, translation, as well as many central biological processes like cell cycle progression, cell differentiation, development, and pluripotency. LncRNAs are dysregulated in various malignancies and interact with a multitude of RNAs and proteins to impact drug resistance. LncRNAs regulate chemoresistance in cancer by employing an assortment of molecular mechanisms including multidrug efflux, suppression of apoptosis, DNA damage response, epigenetic alterations, as well as functioning as competitive endogenous RNA. When combined with other regulatory mechanisms, these pathways form a complex orchestration of signaling that ultimately lead to chemoresistance. The current review delves into the role of lncRNAs in inducing drug resistance to conventional therapeutic anti-cancer drugs used for the treatment of breast cancer. We propose that lncRNAs that provoke drug resistance could be used to develop new targeted and tailored therapeutics providing a novel approach to introduce promising personalized treatment modalities to overcome chemoresistance in breast cancer patients. Hence, lncRNAs that drive anticancer drug resistance can be potentially explored as biomarkers of disease prognosis and may provide unique opportunities to circumvent chemoresistance in breast cancer patients.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Neoplasias Pulmonares , ARN Largo no Codificante , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
12.
Cancer Rep (Hoboken) ; 5(10): e1600, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35274824

RESUMEN

BACKGROUND: Natural products with targeted bioactivity have gained major attention in the field of cancer research owing to emerging anti-cancer drug resistance and off target toxicities. Chloroxylon swietenia (Roxb.) DC is recognized as a folklore medicinal plant and has numerous therapeutic benefits in the folklore medicine system, however the anti-cancer potential of this plant and its mechanism of action is poorly understood. AIMS: The aim of the study was to investigate the anti-breast cancer efficacy of C. swietenia leaves methanol extract (CSLME) against MCF-7 hormone dependent human breast cancer cell line with possible mechanism of action. METHODS AND RESULTS: The anti-breast cancer activity of CSLME against MCF-7 cells was assessed by evaluating its efficacy toward cytotoxicity, cell migration, colony formation, DNA fragmentation, apoptosis, cytoskeleton, angiogenesis, cell cycle regulation, and animal toxicity. The preliminary screening of CSLME against MCF-7 cells revealed the cytotoxicity (IC50 20 µg/ml), inhibited cell migration, colony formation, and angiogenesis. It was observed that CSLME induces apoptosis by nuclear fragmentation and disruption of cytoskeleton by actin derangement. The results of Annexin V-FITC assay and cell cycle analysis by flow cytometry clearly pointed out the sizable fraction of apoptotic cells, and arrested the cells at G2/M phase of cell cycle. The results of the immunoblotting experiments showed that CSLME activates intrinsic pathway of apoptosis with down regulation of anti-apoptotic marker like Bcl2, up regulation of pro-apoptotic markers like Bax & Bad, along with successful cleavage of Caspase-9 and PARP-1. Further, western blot analysis revealed the possible down regulation of NF-κB pathway by CSLME, which may be responsible for anti-cancer activity in MCF-7 cells. In vivo animal model studies using NOD-SCID mice demonstrated impressive anti-tumor activity with significant reduction in tumor volume of MCF-7 tumor xenograft. Of note, in-vivo acute oral toxicity study as per Organization for Economic Cooperation and Development 423 revealed the nontoxic nature of CSLME. CONCLUSION: The in vitro and in vivo findings clearly outline the potential of CSLME as inhibitor of growth and proliferation of MCF-7 cells. Mechanistically, CSLME seems to activate intrinsic pathway of apoptosis, arrest cell cycle, target actin cytoskeleton, inhibit growth, colony formation, migration, and angiogenesis, with down regulation of NF-κB pathway leading to cell death.


Asunto(s)
Productos Biológicos , Neoplasias de la Mama , Rutaceae , Actinas/metabolismo , Animales , Apoptosis , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Neoplasias de la Mama/patología , Caspasa 9/metabolismo , Caspasa 9/farmacología , Proliferación Celular , Femenino , Hormonas/farmacología , Hormonas/uso terapéutico , Humanos , Células MCF-7 , Metanol/farmacología , Metanol/uso terapéutico , Ratones , Ratones Endogámicos NOD , Ratones SCID , FN-kappa B/metabolismo , FN-kappa B/farmacología , FN-kappa B/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/uso terapéutico , Rutaceae/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/farmacología
13.
Sci Rep ; 12(1): 1712, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110603

RESUMEN

In the landscape of epigenetic regulation, histone deacetylase 3 (HDAC3) has emerged as a prominent therapeutic target for the design and development of candidate drugs against various types of cancers and other human disorders. Herein, we have performed ligand-based pharmacophore modeling, virtual screening, molecular docking, and MD simulations to design potent and selective inhibitors against HDAC3. The predicted best pharmacophore model 'Hypo 1' showed excellent correlation (R2 = 0.994), lowest RMSD (0.373), lowest total cost value (102.519), and highest cost difference (124.08). Hypo 1 consists of four salient pharmacophore features viz. one hydrogen bond acceptor (HBA), one ring aromatic (RA), and two hydrophobic (HYP). Hypo 1 was validated by Fischer's randomization with a 95% of confidence level and the external test set of 60 compounds with a good correlation coefficient (R2 = 0.970). The virtual screening of chemical databases, drug-like properties calculations followed by molecular docking resulted in identifying 22 representative hit compounds. Performed 50 ns of MD simulations on top three hits were retained the salient π-stacking, Zn2+ coordination, hydrogen bonding, and hydrophobic interactions with catalytic residues from the active site pocket of HDAC3. Total binding energy calculated by MM-PBSA showed that the Hit 1 and Hit 2 formed stable complexes with HDAC3 as compared to reference TSA. Further, the PLIP analysis showed a close resemblance between the salient pharmacophore features of Hypo 1 and the presence of molecular interactions in co-crystallized FDA-approved drugs. We conclude that the screened hit compounds may act as potent inhibitors of HDAC3 and further preclinical and clinical studies may pave the way for developing them as effective therapeutic agents for the treatment of different cancers and neurodegenerative disorders.


Asunto(s)
Diseño Asistido por Computadora , Diseño de Fármacos , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Simulación del Acoplamiento Molecular , Sitios de Unión , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/química , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
14.
Arch Virol ; 167(3): 717-736, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35089390

RESUMEN

Hepatitis C virus (HCV) infections are emerging as one of the foremost challenges in healthcare owing to its chronicity and the virus's quasispecies nature. Worldwide, over 170 million people are chronically infected with HCV, with an annual mortality of over 500,000 people across the world. The emerging pathophysiological evidence links HCV infections to a risk of developing liver diseases such as cirrhosis and hepatocellular carcinoma. Despite the great strides that have been made towards understanding the pathophysiology of disease progression, the tailored treatments of HCV infection remain to be established. The present review provides an update of the literature pertaining to evolving therapeutic approaches and prophylactic measures for the effective management of HCV infections. An extensive discussion of established and experimental immune prophylactic measures also sheds light on current developments in the design of vaccination strategies against HCV infection. We have also attempted to address the application of nanotechnology in formulating effective therapeutic interventions against HCV. Pointing out the limitations of the existing diagnostic methods and therapeutic approaches against HCV might inspire the design and development of novel, efficient, reliable, and cost-effective diagnostic technologies as well as novel therapeutic and immune prophylactic interventions for the effective management of HCV.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C Crónica , Hepatitis C , Neoplasias Hepáticas , Hepacivirus/genética , Hepatitis C/diagnóstico , Hepatitis C/tratamiento farmacológico , Hepatitis C Crónica/tratamiento farmacológico , Humanos , Cirrosis Hepática
15.
J Biomol Struct Dyn ; 40(23): 12739-12749, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34550842

RESUMEN

The soybean peroxidase (SBP) mediated nanohybrid [SBP-Cu3(PO4)2·3H2O] synthesis was carried out in the present study. The scanning electron microscopy (SEM) analysis showed a characteristic flower-like hierarchical structure of the SBP-nanohybrid. The mechanism of SBP-nanohybrid formation was elucidated using computational approaches. The predicted Cu2+ binding sites followed by molecular docking studies showed the two lowest energy (-4.4 kcal/mol and -3.56 kcal/mol) Cu2+ binding sites. These two binding sites are located at the opposite position and might be involved in the formation of SBP-nanohybrid assemblies. Further, these sites are different than the catalytic active site pocket of SBP, and may facilitate more substrate catalysis. Obtained computational results were confirmed by in-vitro guaiacol oxidations studies using SBP-nanohybrid. The effect of various parameters on SBP-nanohybrid activity was studied. The pH 7.2 was found optimum for SBP-nanohybrid activity. The enzyme activity increased with an increase in temperature up to 50 °C temperature and then decreased with an increase in temperature. Around ∼138% enhanced activity was recorded using SBP-nanohybrid compared to crude SBP. Also, the SBP-nanohybrid showed around 95% decolorization of methylene blue (MB) in 1 h and the MB degradation was confirmed by high-pressure liquid chromatography analysis (HPLC).Communicated by Ramaswamy H. Sarma.


Asunto(s)
Glycine max , Peroxidasa , Peroxidasa/química , Simulación del Acoplamiento Molecular , Peroxidasas/metabolismo , Colorantes/química
16.
J Biomol Struct Dyn ; 40(13): 5759-5768, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33446085

RESUMEN

The serine protease, elastase exists in various forms and plays diverse roles in the human body. Pharmacological inhibition of elastase has been investigated for its therapeutic role in managing conditions such as diabetes, pneumonia and arthritis. Sivelestat, a synthetic molecule, is the only elastase inhibitor to have been approved by any major drug regulatory authority (PMDA, in this case) - but still has failed to attain widespread clinical usage owing to its high price, cumbersome administration and obscure long-term safety profile. In order to find a relatively better-suited alternative, screening was conducted using plant flavonoids, which yielded baicalein, a molecule that showed robust inhibition against Pancreatic Elastase inhibition (IC50: 3.53 µM). Other than having a considerably lower IC50than sivelestat, baicalein is also cheaper, safer and easier to administer. While MicroScale Thermophoresis validated baicalein-elastase interaction, enzyme-kinetic studies, molecular docking and molecular dynamic simulation revealed the mode of inhibition to be non-competitive. Baicalein exhibited binding to a distinct allosteric site on the enzyme. The current study demonstrates the elastase inhibition properties of baicalein in an in-vitro and in-silico environment.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Inhibidores Enzimáticos , Flavanonas , Elastasa Pancreática , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Flavanonas/química , Flavanonas/farmacología , Humanos , Cinética , Simulación del Acoplamiento Molecular , Elastasa Pancreática/antagonistas & inhibidores
17.
Bioorg Chem ; 115: 105259, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34426144

RESUMEN

In this study, we report the expeditious synthesis of ten new antifungal and antioxidant agents containing heterocyclic linked 7-arylidene indanone moiety. The solvent-free microwave technique, ample substrate scope, superfast synthesis, and very simple operation are noteworthy features of this protocol. Antifungal activities of the newly synthesized compounds were evaluated against four fungal strains namely Rhizophus oryzae, Mucor mucido, Aspergillus niger, and Candida albicans. Most of the compounds were shown strong inhibition of the investigated fungal agents. In vitro, antioxidant potential against DPPH and OH radicals affirmed that the synthesized compounds are good to excellent radicals scavenging agents. The cytotoxicity data of the synthesized compounds towards HL-60 cells uncovered that the synthesized compounds display very low to negligible cytotoxicity. The structural and quantum chemical parameters of the synthesized compounds were explored by employing density functional theory (DFT) at B3LYP functional using 6-311G(d,p) basis set. The compound 3a is discussed in detail for the theoretical and experimental correlation. Time-dependent density functional theory (TD-DFT) at CAM-B3LYP functional with 6-311G(d,p) basis set was used for the electronic absorption study in the gas phase and indichloromethane and benzene solvents. The UV-Visible absorption peaks and fundamental vibrational wavenumbers were computed and a good agreement between observed and theoretical results has been achieved. From the DFT and antifungal activity correlation, it has been found that the 7-heteroarylidene indanones with more stabilized LUMO energy levels display good antifungal potential.


Asunto(s)
Antifúngicos/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Compuestos Heterocíclicos/farmacología , Indanos/farmacología , Microondas , Antifúngicos/síntesis química , Antifúngicos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Antioxidantes/síntesis química , Antioxidantes/química , Aspergillus niger/efectos de los fármacos , Candida albicans/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HL-60 , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/química , Humanos , Indanos/síntesis química , Indanos/química , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Mucor/efectos de los fármacos , Oryza/efectos de los fármacos , Relación Estructura-Actividad
18.
Comput Biol Chem ; 92: 107484, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33865034

RESUMEN

N-(4-(substituted)-3-(trifluoromethyl) phenyl) isobutyramides and their N-ethyl analogues (flutamides) are versatile scaffolds with a wide spectrum of biological activities. A series of new N-(4-(substituted)-3-(trifluoromethyl) phenyl) isobutyramides (8a-t) and their N-ethyl analogous (9a-t) were synthesized and characterized. The inhibitory potential of the synthesized compounds on the viability of three human cancer cell lines HEP3BPN 11 (liver), MDA-MB 453 (breast), and HL 60 (leukemia) were assessed. Among all the compounds 8 L, 8q, 9n and 9p showed higher inhibitory activity on the viability of HL 60 than the standard methotrexate. These lead molecules were then tested for their potential to inhibit the activity of proangiogenic cytokines. The compound 9n showed significantly better inhibition against two cytokines viz. TNFα and Leptin as compared to the standard suramin, while 9p has activity comparable to suramin against IGF1, VEGF, FGFb, and Leptin. The 8q is found to be strong antiangiogenic agent against IGF1, VEGF and TGFß; while 8 L has showed activity against TNFα, VEGF, and Leptin inhibition. Furthermore antioxidant potential of 8a-t and 9a-t compounds was screened using DPPH, OH and SOR radical scavenging activities. The OH radical scavenging activity of 8c and DPPH activities of 9n as well as 9o are significant as compared to respective standards ascorbic acid and α-tocopherol. The 8c, 9p and 9 h have also exhibited potential antioxidant activity. Additionally, we present in silico molecular docking data to provide the structural rationale of observed TNFα inhibition against newly synthesized compounds. Overall, the synthesized flutamide derivatives have not only anticancer activity, but also possess dual inhibitory effect (anti-angiogenesis and antioxidant) and hence can act as a promising avenue to develop further anticancer agents.


Asunto(s)
Amidas/farmacología , Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Citocinas/antagonistas & inhibidores , Amidas/síntesis química , Amidas/química , Inhibidores de la Angiogénesis/síntesis química , Inhibidores de la Angiogénesis/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Antioxidantes/síntesis química , Antioxidantes/química , Compuestos de Bifenilo/antagonistas & inhibidores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/biosíntesis , Humanos , Radical Hidroxilo/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Picratos/antagonistas & inhibidores
19.
Mol Divers ; 25(3): 1679-1700, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32737682

RESUMEN

Leishmaniasis is one of the most neglected tropical diseases that demand immediate attention to the identification of new drug targets and effective drug candidates. The present study demonstrates the possibility of using threonine synthase (TS) as a putative drug target in leishmaniasis disease management. We report the construction of an effective homology model of the enzyme that appears to be structurally as well as functionally well conserved. The 200 nanosecond molecular dynamics data on TS with and without pyridoxal phosphate (PLP) shed light on mechanistic details of PLP-induced conformational changes. Moreover, we address some important structural and dynamic interactions in the PLP binding region of TS that are in good agreement with previously speculated crystallographic estimations. Additionally, after screening more than 44,000 compounds, we propose 10 putative inhibitor candidates for TS based on virtual screening data and refined Molecular Mechanics Generalized Born Surface Area calculations. We expect that structural and functional dynamics data disclosed in this study will help initiate experimental endeavors toward establishing TS as an effective antileishmanial drug target.


Asunto(s)
Antiprotozoarios/química , Liasas de Carbono-Oxígeno/química , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Secuencia de Aminoácidos , Antiprotozoarios/farmacología , Sitios de Unión , Liasas de Carbono-Oxígeno/antagonistas & inhibidores , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/farmacología , Leishmania major/enzimología , Conformación Molecular , Unión Proteica , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
20.
J Mol Model ; 26(8): 218, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32720228

RESUMEN

Leishmaniasis is a tropical neglected disease that imposes major health concerns in many endemic countries worldwide and requires urgent attention to the identification of new drug targets as well as drug candidates. In the current study, we propose homoserine kinase (HSK) inhibition as a strategy to induce pathogen mortality via generating threonine deficiency. We introduce a homology-based molecular model of leishmanial HSK that appears to possess all conserved structural as well as functional features in the GHMP kinase family. Furthermore, 200 ns molecular dynamics data of the enzyme in open and closed state attempts to provide the mechanistic details involved in the substrate as well as phosphate binding to this enzyme. We discuss the structural and functional significance of movements involved in various loops (motif 1, 2, 3) and lips (upper and lower) in the transition of leishmanial HSK from closed to open state. Virtual screening data of more than 40,000 compounds from the present investigation tries to identify a few potential HSK inhibitors that possess important features to act as efficient HSK inhibitors. These compounds can be considered an effective starting point for the identification of novel drug-like scaffolds. We hope the structural wealth that is offered in this report will be utilized in designing competent experimental and therapeutic interventions for leishmaniasis management. Graphical abstract.


Asunto(s)
Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Tripanocidas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Catálisis , Secuencia Conservada , Inhibidores Enzimáticos/farmacología , Humanos , Leishmania/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Unión Proteica , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Tripanocidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...