Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Allergy Asthma Immunol Res ; 15(6): 767-778, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37957794

RESUMEN

PURPOSE: Humulus japonicus (HJ) is one of the most important causes of weed pollinosis in East Asia. The 10 kDa protein with pI 10 in 2-dimensional gel has been recognized as the representative major allergen of HJ, but its major allergens have not been characterized. This study aimed to characterize the major allergen of HJ. METHODS: A major allergen in Japanese hop was detected by proteome analysis; it was purified to homogeneity and its sequence was obtained by transcriptome analysis. The recombinant proteins were produced in Escherichia coli and Pichia expression systems, and their immunoglobulin E (IgE) reactivities were compared to those of the natural counterpart. We also analyzed post-translational modifications such as glycosylation and phosphorylation. RESULTS: Pectin methylesterase inhibitor, Hum j 6, was found to be the major allergen of HJ, and in silico signal peptide prediction corresponds to a 15.1 kDa protein with a theoretical pI of 8.28. Natural Hum j 6 was recognized by IgE antibodies from 86.4% (19/22) of HJ pollinosis patients, whereas the recombinant proteins did not show strong IgE reactivity. No glycosylation was detected, while at least 15 phosphorylated amino acids, possibly causing the pI and molecular weight shift, were detected by tandem mass spectrometry analysis. CONCLUSIONS: Hum j 6 was identified as the representative major allergen of HJ and seems to be modified significantly after translation. These findings are useful for the development of component-resolved diagnosis and immunotherapy.

2.
Front Allergy ; 4: 1223904, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37389281
3.
Pediatr Allergy Immunol ; 34 Suppl 28: e13854, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37186333

RESUMEN

Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.


Asunto(s)
Hipersensibilidad , Humanos , Hipersensibilidad/diagnóstico , Hipersensibilidad/terapia , Alérgenos , Inmunoglobulina E
4.
Curr Allergy Asthma Rep ; 23(6): 277-285, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37178263

RESUMEN

PURPOSE OF REVIEW: Defensin-polyproline-linked proteins are relevant allergens in Asteraceae pollen. Depending on their prevalence and amount in the pollen source, they are potent allergens, as shown for the major mugwort pollen allergen Art v 1. Only a few allergenic defensins have been identified in plant foods, such as peanut and celery. This review provides an overview of structural and immunological features, IgE cross-reactivity, and diagnostic and therapeutic options regarding allergenic defensins. RECENT FINDINGS: We present and critically review the allergenic relevance of pollen and food defensins. The recently identified Api g 7 from celeriac and other allergens potentially involved in Artemisia pollen-related food allergies are discussed and related to clinical severity and allergen stability. To specify Artemisia pollen-related food allergies, we propose the term "defensin-related food allergies" to account for defensin-polyproline-linked protein-associated food syndromes. There is increasing evidence that defensins are the causative molecules in several mugwort pollen-associated food allergies. A small number of studies have shown IgE cross-reactivity of Art v 1 with celeriac, horse chestnut, mango, and sunflower seed defensins, while the underlying allergenic molecule remains unknown in other mugwort pollen-associated food allergies. As these food allergies can cause severe allergic reactions, identification of allergenic food defensins and further clinical studies with larger patient cohorts are required. This will allow molecule-based allergy diagnosis and a better understanding of defensin-related food allergies to raise awareness of potentially severe food allergies due to primary sensitization to Artemisia pollen.


Asunto(s)
Artemisia , Hipersensibilidad a los Alimentos , Humanos , Proteínas de Plantas/química , Polen , Alérgenos , Reacciones Cruzadas , Inmunoglobulina E , Defensinas/análisis , Antígenos de Plantas
5.
Front Immunol ; 14: 1094694, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090735

RESUMEN

Background: Treg cells have been shown to be an important part of immune-homeostasis and IL-2 which is produced upon T cell receptor (TCR)-dependent activation of T lymphocytes has been demonstrated to critically participate in Treg development. Objective: To evaluate small molecule inhibitors (SMI) for the identification of novel IL-2/Treg enhancing compounds. Materials and methods: We used TCR-dependent and allergen-specific cytokine secretion of human and mouse T cells, next generation messenger ribonucleic acid sequencing (RNA-Seq) and two different models of allergic airway inflammation to examine lead SMI-compounds. Results: We show here that the reported 3-phosphoinositide dependent kinase-1 (PDK1) SMI BX-795 increased IL-2 in culture supernatants of Jurkat E6-1 T cells, human peripheral blood mononuclear cells (hPBMC) and allergen-specific mouse T cells upon TCR-dependent and allergen-specific stimulation while concomitantly inhibiting Th2 cytokine secretion. RNA-Seq revealed that the presence of BX-795 during allergen-specific activation of T cells induces a bona fide Treg cell type highly similar to iTreg but lacking Foxp3 expression. When applied in mugwort pollen and house dust mite extract-based models of airway inflammation, BX-795 significantly inhibited Th2 inflammation including expression of Th2 signature transcription factors and cytokines and influx into the lungs of type 2-associated inflammatory cells such as eosinophils. Conclusions: BX-795 potently uncouples IL-2 production from Th2 inflammation and induces Th-IL-2 cells, which highly resemble induced (i)Tregs. Thus, BX-795 may be a useful new compound for the treatment of allergic diseases.


Asunto(s)
Interleucina-2 , Leucocitos Mononucleares , Ratones , Animales , Humanos , Interleucina-2/metabolismo , Leucocitos Mononucleares/metabolismo , Células Th2 , Alérgenos/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo
6.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36835585

RESUMEN

Sublingual immunotherapy (SLIT) is used worldwide to treat house dust mites (HDM) allergy. Epitope specific immunotherapy with peptide vaccines is used far less, but it is of great interest in the treatment of allergic reactions, as it precludes the drawbacks of allergen extracts. The ideal peptide candidates would bind to IgG, blocking IgE-binding. To better elucidate IgE and IgG4 epitope profiles during SLIT, sequences of main allergens, Der p 1, 2, 5, 7, 10, 23 and Blo t 5, 6, 12, 13, were included in a 15-mer peptide microarray and tested against pooled sera from 10 patients pre- and post-1-year SLIT. All allergens were recognized to some extent by at least one antibody isotype and peptide diversity was higher post-1-year SLIT for both antibodies. IgE recognition diversity varied among allergens and timepoints without a clear tendency. Der p 10, a minor allergen in temperate regions, was the molecule with more IgE-peptides and might be a major allergen in populations highly exposed to helminths and cockroaches, such as Brazil. SLIT-induced IgG4 epitopes were directed against several, but not all, IgE-binding regions. We selected a set of peptides that recognized only IgG4 or were able to induce increased ratios of IgG4:IgE after one year of treatment and might be potential targets for vaccines.


Asunto(s)
Alergia a los Ácaros del Polvo , Inmunoterapia Sublingual , Humanos , Animales , Alérgenos , Epítopos , Inmunoglobulina G , Inmunoglobulina E , Péptidos , Antígenos Dermatofagoides , Pyroglyphidae
7.
Vaccines (Basel) ; 10(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36146508

RESUMEN

The progressive accumulation of misfolded α-synuclein (α-syn) in the brain is widely considered to be causal for the debilitating clinical manifestations of synucleinopathies including, most notably, Parkinson's disease (PD). Immunotherapies, both active and passive, against α-syn have been developed and are promising novel treatment strategies for such disorders. To increase the potency and specificity of PD vaccination, we created the 'Win the Skin Immune System Trick' (WISIT) vaccine platform designed to target skin-resident dendritic cells, inducing superior B and T cell responses. Of the six tested WISIT candidates, all elicited higher immune responses compared to conventional, aluminum adjuvanted peptide-carrier conjugate PD vaccines, in BALB/c mice. WISIT-induced antibodies displayed higher selectivity for α-syn aggregates than those induced by conventional vaccines. Additionally, antibodies induced by two selected candidates were shown to inhibit α-syn aggregation in a dose-dependent manner in vitro. To determine if α-syn fibril formation could also be inhibited in vivo, WISIT candidate type 1 (CW-type 1) was tested in an established synucleinopathy seeding model and demonstrated reduced propagation of synucleinopathy in vivo. Our studies provide proof-of-concept for the efficacy of the WISIT vaccine technology platform and support further preclinical and clinical development of this vaccine candidate.

8.
J Allergy Clin Immunol ; 150(4): 920-930, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35738928

RESUMEN

BACKGROUND: Worldwide, pollen of the weed mugwort (Artemisiavulgaris) is a major cause of severe respiratory allergy, with its major allergen, Art v 1, being the key pathogenic molecule for millions of patients. Humanized mice transgenic for a human T-cell receptor specific for the major Art v 1 T-cell epitope and the corresponding HLA have been made. OBJECTIVE: We sought to characterize IgE epitopes of Art v 1-sensitized patients and humanized mice for molecular immunotherapy of mugwort allergy. METHODS: Four overlapping peptides incorporating surface-exposed amino acids representing the full-length Art v 1 sequence were synthesized and used to search for IgE reactivity to sequential epitopes. For indirect mapping, peptide-specific rabbit antibodies were raised to block IgE against surface-exposed epitopes on folded Art v 1. IgE reactivity and basophil activation studies were performed in clinically defined mugwort-allergic patients. Secondary structure of recombinant (r) Art v 1 and peptides was determined by circular dichroism spectroscopy. RESULTS: Mugwort-allergic patients and humanized mice sensitized by allergen inhalation showed IgE reactivity and/or basophil activation mainly to folded, complete Art v 1 but not to unfolded, sequential peptide epitopes. Blocking of allergic patients' IgE with peptide-specific rabbit antisera identified a hitherto unknown major conformational IgE binding site in the C-terminal Art v 1 domain. CONCLUSIONS: Identification of the new major conformational IgE binding site on Art v 1, which can be blocked with IgG raised against non-IgE reactive Art v 1 peptides, is an important basis for the development of a hypoallergenic peptide vaccine for mugwort allergy.


Asunto(s)
Artemisia , Hipersensibilidad , Alérgenos , Aminoácidos , Animales , Antígenos de Plantas , Artemisia/química , Epítopos de Linfocito T , Humanos , Sueros Inmunes , Inmunoglobulina E , Inmunoglobulina G , Ratones , Péptidos , Proteínas de Plantas , Conejos
9.
Biotechnol Appl Biochem ; 69(5): 1771-1792, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34427974

RESUMEN

Within the last decade, the application range of aptamers in biochemistry and medicine has expanded rapidly. More than just a replacement for antibodies, these intrinsically structured RNA- or DNA-oligonucleotides show great potential for utilization in diagnostics, specific drug delivery, and treatment of certain medical conditions. However, what is analyzed less frequently is the process of aptamer identification known as systematic evolution of ligands by exponential enrichment (SELEX) and the functional mechanisms that lie at its core. SELEX involves numerous singular processes, each of which contributes to the success or failure of aptamer generation. In this review, critical steps during aptamer selection are discussed in-depth, and specific problems are presented along with potential solutions. The discussed aspects include the size and molecule type of the selected target, the nature and stringency of the selection process, the amplification step with its possible PCR bias, the efficient regeneration of RNA or single-stranded DNA, and the different sequencing procedures and screening assays currently available. Finally, useful quality control steps and their role within SELEX are presented. By understanding the mechanisms through which aptamer selection is influenced, the design of more efficient SELEX procedures leading to a higher success rate in aptamer identification is enabled.


Asunto(s)
Aptámeros de Nucleótidos , Técnica SELEX de Producción de Aptámeros , Técnica SELEX de Producción de Aptámeros/métodos , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/química , ADN de Cadena Simple , Ligandos , ARN
11.
Front Immunol ; 13: 1010105, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685521

RESUMEN

Introduction: Considering the likely need for the development of novel effective vaccines adapted to emerging relevant CoV-2 variants, the increasing knowledge of epitope recognition profile among convalescents and afterwards vaccinated with identification of immunodominant regions may provide important information. Methods: We used an RBD peptide microarray to identify IgG and IgA binding regions in serum of 71 COVID-19 convalescents and 18 vaccinated individuals. Results: We found a set of immunodominant RBD antibody epitopes, each recognized by more than 30% of the tested cohort, that differ among the two different groups and are within conserved regions among betacoronavirus. Of those, only one peptide, P44 (S415-429), recognized by 68% of convalescents, presented IgG and IgA antibody reactivity that positively correlated with nAb titers, suggesting that this is a relevant RBD region and a potential target of IgG/IgA neutralizing activity. Discussion: This peptide is localized within the area of contact with ACE-2 and harbors the mutation hotspot site K417 present in gamma (K417T), beta (K417N), and omicron (K417N) variants of concern. The epitope profile of vaccinated individuals differed from convalescents, with a more diverse repertoire of immunodominant peptides, recognized by more than 30% of the cohort. Noteworthy, immunodominant regions of recognition by vaccinated coincide with mutation sites at Omicron BA.1, an important variant emerging after massive vaccination. Together, our data show that immune pressure induced by dominant antibody responses may favor hotspot mutation sites and the selection of variants capable of evading humoral response.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Formación de Anticuerpos , Epítopos Inmunodominantes/genética , Epítopos , Inmunoglobulina A , Mutación , Inmunoglobulina G
12.
Clin Transl Allergy ; 11(1): e12004, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33900048

RESUMEN

AIM: Molecular sensitization profile analyses of allergic individuals to the house dust mites (HDM) Blomia tropicalis and Dermatophagoides pteronyssinus from Brazil and Austria, in the attempt to comprehend the individual contribution of the molecular components in the diagnosis of HDM allergy. METHODOLOGY: These analyses were made using a new in vitro multiplex allergen assay which allows simultaneous measurement of specific IgE against the whole allergen extract as well its components. RESULTS AND CONCLUSION: The data showed that in Brazil the inclusion of the molecular components Blo t 5 and/or Blo t 21 major allergens and Blo t 2 can increase the sensitivity and specificity of the assay for the diagnosis of allergy to B. tropicalis, using matrix-based methodologies. Also we highlighted, for the first time, the importance of Blo t 2 analysis for a sensitive diagnosis, since some individuals were sensitized only to this molecular component. Regarding the sensitization profile of individuals sensitized to D. pteronyssinus, we point out the importance of analyzing the molecular components Der p23 and Der p 7, in addition to Der p 1 and Der p 2 for an accurate diagnosis based on matrices.

13.
World Allergy Organ J ; 14(3): 100516, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33717396

RESUMEN

BACKGROUND: Skin prick test (SPT) solutions and allergy vaccines (AVs) are crucial tools for diagnosis and therapy of allergies. It was the aim of this study to corroborate the content of products for diagnosis and treatment of dust mite allergies that are produced and sold in India. METHODS: SDS-PAGE, immunoblots and high-resolution mass spectrometric analysis was performed with 16 house dust mite (HDM) SPT solutions and AVs from 3 Indian manufacturers. Authority-approved European SPT solutions and in-house extracts were used as references. RESULTS: From the 5 Indian Dermatophagoides pteronyssinus products, none contained proteins from this source. Instead, 1 sample contained Dermatophagoides farinae and human serum proteins, 4 products contained allergens from the storage mite Suidasia medanensis, allergens from the legume Cicer arietinum (chickpea), and proteins from baker's yeast. From 4 Indian D. farinae-labeled products, 2 contained human serum proteins and a limited number of D. farinae allergens. Two contained only Suidasia, Cicer, and yeast proteins. In contrast, the European authority-approved D. pteronyssinus and D. farinae SPT solutions that were used as reference in this study, contained exclusively proteins of the respective species and covered the expected allergen spectra. The Blomia tropicalis sample contained no Blomia allergens at all, but consisted exclusively of Suidasia, Cicer, and yeast proteins. All 6 HDM samples consisted of human serum proteins and limited amounts of D. farinae allergens. CONCLUSIONS: All commercial Indian SPT solutions and AVs analyzed in this study are not suitable for dust mite allergy diagnosis and therapy, as they contain either no, or only a limited number of, HDM allergens. In addition, their use could lead to misdiagnosis since some of them contain allergens from other sources, including the storage mite Suidasia, chickpea, as well as baker's yeast. Further, their application might be harmful to patients, as some products contain large amounts of proteins of human origin. Analysis of European SPT solutions, on the other hand, confirmed their suitability for dust mite allergy diagnosis.

14.
Allergy ; 76(8): 2383-2394, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33655520

RESUMEN

Until recently, glycan epitopes have not been documented by the WHO/IUIS Allergen Nomenclature Sub-Committee. This was in part due to scarce or incomplete information on these oligosaccharides, but also due to the widely held opinion that IgE to these epitopes had little or no relevance to allergic symptoms. Most IgE-binding glycans recognized up to 2008 were considered to be "classical" cross-reactive carbohydrate determinants (CCD) that occur in insects, some helminths and throughout the plant kingdom. Since 2008, the prevailing opinion on lack of clinical relevance of IgE-binding glycans has been subject to a reevaluation. This was because IgE specific for the mammalian disaccharide galactose-alpha-1,3-galactose (alpha-gal) was identified as a cause of delayed anaphylaxis to mammalian meat in the United States, an observation that has been confirmed by allergists in many parts of the world. Several experimental studies have shown that oligosaccharides with one or more terminal alpha-gal epitopes can be attached as a hapten to many different mammalian proteins or lipids. The classical CCDs also behave like haptens since they can be expressed on proteins from multiple species. This is the explanation for extensive in vitro cross-reactivity related to CCDs. Because of these developments, the Allergen Nomenclature Sub-Committee recently decided to include glycans as potentially allergenic epitopes in an adjunct section of its website (www.allergen.org). In this article, the features of the main glycan groups known to be involved in IgE recognition are revisited, and their characteristic structural, functional, and clinical features are discussed.


Asunto(s)
Alérgenos , Inmunoglobulina E , Animales , Carbohidratos , Reacciones Cruzadas , Epítopos , Humanos
16.
Front Allergy ; 2: 700533, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35386979

RESUMEN

Motivation: The availability of databases identifying allergenic proteins via a transparent and consensus-based scientific approach is of prime importance to support the safety review of genetically-modified foods and feeds, and public safety in general. Over recent years, screening for potential new allergens sequences has become more complex due to the exponential increase of genomic sequence information. To address these challenges, an international collaborative scientific group coordinated by the Health and Environmental Sciences Institute (HESI), was tasked to develop a contemporary, adaptable, high-throughput process to build the COMprehensive Protein Allergen REsource (COMPARE) database, a publicly accessible allergen sequence data resource along with bioinformatics analytical tools following guidelines of FAO/WHO and CODEX Alimentarius Commission. Results: The COMPARE process is novel in that it involves the identification of candidate sequences via automated keyword-based sorting algorithm and manual curation of the annotated sequence entries retrieved from public protein sequence databases on a yearly basis; its process is meant for continuous improvement, with updates being transparently documented with each version; as a complementary approach, a yearly key-word based search of literature databases is added to identify new allergen sequences that were not (yet) submitted to protein databases; in addition, comments from the independent peer-review panel are posted on the website to increase transparency of decision making; finally, sequence comparison capabilities associated with the COMPARE database was developed to evaluate the potential allergenicity of proteins, based on internationally recognized guidelines, FAO/WHO and CODEX Alimentarius Commission.

17.
Front Allergy ; 2: 691627, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35386988

RESUMEN

Background: Manifestation of respiratory allergy to American cockroach (Periplaneta americana) is prominent in the subtropical and tropical areas. However, co-existing perennial indoor inhalant allergies frequently compromise clinical diagnosis of cockroach allergy, and the analysis of sensitization pattern is limited by the lack of Periplaneta allergens widely available for component-resolved diagnostics (CRD). Objective: To evaluate a collection of previously described recombinant Periplaneta allergens for CRD in cockroach allergy. Methods: A panel of nine recombinant Periplaneta allergens (Per a 1-5, 7-10) was generated, purified, and subjected to physicochemical characterization by applying circular dichroism (CD) spectroscopy, dynamic light scattering (DLS), amino acid (AA) analysis, and mass spectrometry (MS). Patients (n = 117) from India, Korea, Venezuela, and Iran, reporting perennial respiratory indoor allergies with IgE sensitization to cockroach (P. americana and/or Blattella germanica), were included. The sensitization profile was monitored by the experimental ImmunoCAP testing. Results: ImmunoCAP testing confirmed IgE sensitization to Periplaneta and/or Blattella extract in 98 of 117 patients (r = 0.95). Five out of 117 patients were sensitized to only one of the two cockroach species. Within the whole study group, the prevalence of sensitization to individual allergens varied from 4% (Per a 2) to 50% (Per a 9), with the highest IgE values to Per a 9. Patients from four countries displayed different sensitization profiles at which Per a 3 and Per a 9 were identified as major allergens in India and Korea. Periplaneta-derived lipocalin and myosin light chain were characterized as new minor allergens, designated as Per a 4 and Per a 8. Periplaneta extract showed higher diagnostic sensitivity than all individual components combined, suggesting the existence of allergens yet to be discovered. Conclusion: Utilization of a panel of purified Periplaneta allergens revealed highly heterogeneous sensitization patterns and allowed the classification of lipocalin and myosin light chain from Periplaneta as new minor allergens.

18.
Allergy ; 76(1): 210-222, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32621318

RESUMEN

BACKGROUND: Allergen-specific immunotherapy via the skin targets a tissue rich in antigen-presenting cells, but can be associated with local and systemic side effects. Allergen-polysaccharide neoglycogonjugates increase immunization efficacy by targeting and activating dendritic cells via C-type lectin receptors and reduce side effects. OBJECTIVE: We investigated the immunogenicity, allergenicity, and therapeutic efficacy of laminarin-ovalbumin neoglycoconjugates (LamOVA). METHODS: The biological activity of LamOVA was characterized in vitro using bone marrow-derived dendritic cells. Immunogenicity and therapeutic efficacy were analyzed in BALB/c mice. Epicutaneous immunotherapy (EPIT) was performed using fractional infrared laser ablation to generate micropores in the skin, and the effects of LamOVA on blocking IgG, IgE, cellular composition of BAL, lung, and spleen, lung function, and T-cell polarization were assessed. RESULTS: Conjugation of laminarin to ovalbumin reduced its IgE binding capacity fivefold and increased its immunogenicity threefold in terms of IgG generation. EPIT with LamOVA induced significantly higher IgG levels than OVA, matching the levels induced by s.c. injection of OVA/alum (SCIT). EPIT was equally effective as SCIT in terms of blocking IgG induction and suppression of lung inflammation and airway hyperresponsiveness, but SCIT was associated with higher levels of therapy-induced IgE and TH2 cytokines. EPIT with LamOVA induced significantly lower local skin reactions during therapy compared to unconjugated OVA. CONCLUSION: Conjugation of ovalbumin to laminarin increased its immunogenicity while at the same time reducing local side effects. LamOVA EPIT via laser-generated micropores is safe and equally effective compared to SCIT with alum, without the need for adjuvant.


Asunto(s)
Asma , Neumonía , beta-Glucanos , Alérgenos , Animales , Asma/terapia , Rayos Láser , Ratones , Ratones Endogámicos BALB C , Ovalbúmina
19.
Clin Transl Allergy ; 10(1): 50, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33292509

RESUMEN

BACKGROUND: Artemisia weed pollen allergy is important in the northern hemisphere. While over 350 species of this genus have been recorded, there has been no full investigation into whether different species may affect the allergen diagnosis and treatment. This study aimed to evaluate the variations in amino acid sequences and the content of major allergens, and how these affect specific IgE binding capacity in representative Artemisia species. METHODS: Six representative Artemisia species from China and Artemisia vulgaris from Europe were used to determine allergen amino acid sequences by transcriptome, gene sequencing and mass spectrometry of the purified allergen component proteins. Sandwich ELISAs were developed and applied for Art v 1, Art v 2 and Art v 3 allergen quantification in different species. Aqueous pollen extracts and purified allergen components were used to assess IgE binding by ELISA and ImmunoCAP with mugwort allergic patient serum pools and individual sera from five areas in China. RESULTS: The Art v 1 and Art v 2 homologous allergen sequences in the seven Artemisia species were highly conserved. Art v 3 type allergens in A. annua and A. sieversiana were more divergent compared to A. argyi and A. vulgaris. The allergen content of Art v 1 group in the seven extracts ranged from 3.4% to 7.1%, that of Art v 2 from 1.0% to 3.6%, and Art v 3 from 0.3% to 10.5%. The highest IgE binding potency for most Chinese Artemisia allergy patients was with A. annua pollen extract, followed by A. vulgaris and A. argyi, with A. sieversiana significantly lower. Natural Art v 1-3 isoallergens from different species have almost equivalent IgE binding capacity in Artemisia allergic patients from China. CONCLUSION AND CLINICAL RELEVANCE: There was high sequence similarity but different content of the three group allergens from different Artemisia species. Choice of Artemisia annua and A. argyi pollen source for diagnosis and immunotherapy is recommended in China.

20.
PLoS One ; 15(11): e0241560, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33151990

RESUMEN

The monoclonal anti-CD20 IgG1 antibody rituximab is used as a first-line treatment for B cell lymphoma. Like all therapeutic antibodies, it is a complex protein for which both safety and efficacy heavily depend on the integrity of its three-dimensional structure. Aptamers, short oligonucleotides with a distinct fold, can be used to detect minor modifications or structural variations of a molecule or protein. To detect antibody molecules in a fold state occurring prior to protein precipitation, we generated DNA aptamers that were selected for extensively heat-treated rituximab. Using the magnetic bead-based systematic evolution of ligands by exponential enrichment (SELEX), we obtained six DNA aptamer sequences (40-mers) specific for 80°C heat-treated rituximab. In silico fold prediction and circular dichroism analysis revealed a G-quadruplex structure for one aptamer, while all others exhibited a B-DNA helix. Binding affinities ranging from 8.8-86.7 nM were determined by an enzyme-linked apta-sorbent assay (ELASA). Aptamers additionally detected structural changes in rituximab treated for 5 min at 70°C, although with lower binding activity. Notably, none of the aptamers recognized rituximab in its native state nor did they detect the antibody after it was exposed to lower temperatures or different physical stressors. Aptamers also reacted with the therapeutic antibody adalimumab incubated at 80°C suggesting similar aptamer binding motifs located on extensively heat-treated IgG1 antibodies. Within this work, we obtained the first aptamer panel, which is specific for an antibody fold state specifically present prior to protein aggregation. This study demonstrates the potential of aptamer selection for specific stress-based protein variants, which has potential impact for quality control of biopharmaceuticals.


Asunto(s)
Anticuerpos/inmunología , Aptámeros de Nucleótidos/metabolismo , Calor , Rituximab/farmacología , Aptámeros de Nucleótidos/química , Dicroismo Circular , Simulación por Computador , Humanos , Conformación de Ácido Nucleico , Técnica SELEX de Producción de Aptámeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...