Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37447554

RESUMEN

Micro- and nanofabrication on polymer substrate is integral to the development of flexible electronic devices, including touch screens, transparent conductive electrodes, organic photovoltaics, batteries, and wearable devices. The demand for flexible and wearable devices has spurred interest in large-area, high-throughput production methods. Roll-to-roll (R2R) nanoimprint lithography (NIL) is a promising technique for producing nano-scale patterns rapidly and continuously. However, bending in a large-scale R2R system can result in non-uniform force distribution during the imprinting process, which reduces pattern quality. This study investigates the effects of R2R imprinting module geometry parameters on force distribution via simulation, using grey relational analysis to identify optimal parameter levels and ANOVA to determine the percentage of each parameter contribution. The study also investigates the length and force ratio on a backup roller used for bending compensation. The simulation results and the artificial neural network (ANN) model enable the prediction of nip pressure and force distribution non-uniformity along the roller, allowing the selection of the optimal roller geometry and force ratio for minimal non-uniformity on a specific R2R system. An experiment was conducted to validate the simulation results and ANN model.

2.
Polymers (Basel) ; 15(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37376333

RESUMEN

Roll-to-roll (R2R) printing methods are well known as additive, cost-effective, and ecologically friendly mass-production methods for processing functional materials and fabricating devices. However, implementing R2R printing to fabricate sophisticated devices is challenging because of the efficiency of material processing, the alignment, and the vulnerability of the polymeric substrate during printing. Therefore, this study proposes the fabrication process of a hybrid device to solve the problems. The device was created so that four layers, composed of polymer insulating layers and conductive circuit layers, are entirely screen-printed layer by layer onto a roll of polyethylene terephthalate (PET) film to produce the circuit. Registration control methods were presented to deal with the PET substrate during printing, and then solid-state components and sensors were assembled and soldered to the printed circuits of the completed devices. In this way, the quality of the devices could be ensured, and the devices could be massively used for specific purposes. Specifically, a hybrid device for personal environmental monitoring was fabricated in this study. The importance of environmental challenges to human welfare and sustainable development is growing. As a result, environmental monitoring is essential to protect public health and serve as a basis for policymaking. In addition to the fabrication of the monitoring devices, a whole monitoring system was also developed to collect and process the data. Here, the monitored data from the fabricated device were personally collected via a mobile phone and uploaded to a cloud server for additional processing. The information could then be utilized for local or global monitoring purposes, moving one step toward creating tools for big data analysis and forecasting. The successful deployment of this system could be a foundation for creating and developing systems for other prospective uses.

3.
Sci Rep ; 12(1): 2954, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35194129

RESUMEN

In printed electronics, flawless printing quality is crucial for electronic device fabrication. While printing defects may reduce the performance or even cause a failure in the electronic device, there is a challenge in quality evaluation using conventional computer vision tools for printing defect recognition. This study proposed the computer vision approach based on artificial intelligence (AI) and deep convolutional neural networks. First, the data set with printed line images was collected and labeled. Second, the overall printing quality classification model was trained and evaluated using the Grad-CAM visualization technique. Third and last, the pretrained object detection model YOLOv3 was fine-tuned for local printing defect detection. Before fine-tuning, ground truth bounding boxes were analyzed, and anchor box sizes were chosen using the k-means clustering algorithm. The overall printing quality and local defect detection AI models were integrated with the roll-based gravure offset system. This AI approach is also expected to complement more accurate printing reliability analysis firmly.

4.
Sci Rep ; 11(1): 19982, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620970

RESUMEN

With the development of technology, wireless and IoT devices are increasingly used from daily life to industry, placing demands on rapid and efficient manufacturing processes. This study demonstrates the fabrication of an IoT device using a roll-to-roll printing process, which could shorten the device fabrication time and reduce the cost of mass production. Here, the fabricated IoT device is designed to acquire data through the sensor, process the data, and communicate with end-user devices via Bluetooth communication. For fabrication, a four-layer circuit platform consisting of two conductive layers, an insulating layer including through holes, and a solder resist layer is directly printed using a roll-to-roll screen printing method. After the printing of the circuit platform, an additional layer of solder paste is printed to assemble the electrical components into the device, inspiring the fully roll-to-roll process for device fabrication. Successful IoT device deployment opens the chance to broaden the roll-to-roll fabrication process to other flexible and multilayer electronic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...