Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immunity ; 57(1): 86-105.e9, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38159572

RESUMEN

Triggering receptor expressed on myeloid cells 2 (Trem2) is a myeloid cell-specific gene expressed in brain microglia, with variants that are associated with neurodegenerative diseases, including Alzheimer's disease. Trem2 is essential for microglia-mediated synaptic refinement, but whether Trem2 contributes to shaping neuronal development remains unclear. Here, we demonstrate that Trem2 plays a key role in controlling the bioenergetic profile of pyramidal neurons during development. In the absence of Trem2, developing neurons in the hippocampal cornus ammonis (CA)1 but not in CA3 subfield displayed compromised energetic metabolism, accompanied by reduced mitochondrial mass and abnormal organelle ultrastructure. This was paralleled by the transcriptional rearrangement of hippocampal pyramidal neurons at birth, with a pervasive alteration of metabolic, oxidative phosphorylation, and mitochondrial gene signatures, accompanied by a delay in the maturation of CA1 neurons. Our results unveil a role of Trem2 in controlling neuronal development by regulating the metabolic fitness of neurons in a region-specific manner.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Metabolismo Energético , Microglía/metabolismo , Neuronas/metabolismo , Animales , Ratones
2.
Neuropathol Appl Neurobiol ; 48(5): e12818, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35501124

RESUMEN

AIM: Mutations in the valosin-containing protein (VCP) gene cause various lethal proteinopathies that mainly include inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) and amyotrophic lateral sclerosis (ALS). Different pathological mechanisms have been proposed. Here, we define the impact of VCP mutants on lysosomes and how cellular homeostasis is restored by inducing autophagy in the presence of lysosomal damage. METHODS: By electron microscopy, we studied lysosomal morphology in VCP animal and motoneuronal models. With the use of western blotting, real-time quantitative polymerase chain reaction (RT-qPCR), immunofluorescence and filter trap assay, we evaluated the effect of selected VCP mutants in neuronal cells on lysosome size and activity, lysosomal membrane permeabilization and their impact on autophagy. RESULTS: We found that VCP mutants induce the formation of aberrant multilamellar organelles in VCP animal and cell models similar to those found in patients with VCP mutations or with lysosomal storage disorders. In neuronal cells, we found altered lysosomal activity characterised by membrane permeabilization with galectin-3 redistribution and activation of PPP3CB. This selectively activated the autophagy/lysosomal transcriptional regulator TFE3, but not TFEB, and enhanced both SQSTM1/p62 and lipidated MAP1LC3B levels inducing autophagy. Moreover, we found that wild type VCP, but not the mutants, counteracted lysosomal damage induced either by trehalose or by a mutant form of SOD1 (G93A), also blocking the formation of its insoluble intracellular aggregates. Thus, chronic activation of autophagy might fuel the formation of multilamellar bodies. CONCLUSION: Together, our findings provide insights into the pathogenesis of VCP-related diseases, by proposing a novel mechanism of multilamellar body formation induced by VCP mutants that involves lysosomal damage and induction of lysophagy.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Ciclo Celular , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Autofagia/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Lisosomas/metabolismo , Neuronas Motoras/metabolismo , Activación Transcripcional , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo
3.
Microsc Res Tech ; 73(3): 215-24, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19725102

RESUMEN

Correlative light and electron microscopy (CLEM) is a multimodal technique of increasing utilization in functional, biochemical, and molecular biology. CLEM attempts to combine multidimensional information from the complementary fluorescence light microscopy (FLM) and electron microscopy (EM) techniques to bridge the various resolution gaps. Within this approach the very same cell/structure/event observed at level can be analyzed as well by FLM and EM. Unfortunately, these studies turned out to be extremely time consuming and are not suitable for statistical relevant data. Here, we describe a new CLEM method based on a robust specimen preparation protocol, optimized for cryosections (Tokuyasu method) and on an innovative image processing toolbox for a novel type of multimodal analysis. Main advantages obtained using the proposed CLEM method are: (1) hundred times more cells/structures/events that can be correlated in each single microscopy session; (2) three-dimensional correlation between FLM and EM, obtained by means of ribbons of serial cryosections and electron tomography microscopy (ETM); (3) high rate of success for each CLEM experiment, obtained implementing protection of samples from physical damage and from loss of fluorescence; (4) compatibility with the classical immunogold and immunofluorescence labeling techniques. This method has been successfully validated for the correlative analysis of Russel Bodies subcellular compartments.


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Células HeLa , Humanos , Manejo de Especímenes/métodos
4.
Traffic ; 9(11): 1828-38, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18817522

RESUMEN

Correlative light/electron microscopy (CLEM) allows the simultaneous observation of a given subcellular structure by fluorescence light microscopy (FLM) and electron microscopy. The use of this approach is becoming increasingly frequent in cell biology. In this study, we report on a new high data output CLEM method based on the use of cryosections. We successfully applied the method to analyze the structure of rough and smooth Russell bodies used as model systems. The major advantages of our method are (i) the possibility to correlate several hundreds of events at the same time, (ii) the possibility to perform three-dimensional (3D) correlation, (iii) the possibility to immunolabel both endogenous and recombinantly expressed proteins at the same time and (iv) the possibility to combine the high data analysis capability of FLM with the high precision-accuracy of transmission electron microscopy in a CLEM hybrid morphometry analysis. We have identified and optimized critical steps in sample preparation, defined routines for sample analysis and retracing of regions of interest, developed software for semi/fully automatic 3D reconstruction and defined preliminary conditions for an hybrid light/electron microscopy morphometry approach.


Asunto(s)
Automatización , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Adolescente , Células HeLa , Humanos , Proteínas Recombinantes/química , Manejo de Especímenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...