Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Res ; 60: 102669, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35063911

RESUMEN

Age-related macular degeneration (AMD) is a major cause of vision loss among the elderly in the Western world. AMD is multifactorial eye disease with a strong genetic contribution. Here, we report the generation and characterization of induced pluripotent stem cells (iPSCs) derived from peripheral blood mononuclear cells of three patients with AMD carrying rare variants in the complement factor H (CFH) gene. These cell lines were generated for cellular studies investigating the disease mechanisms and developing therapeutic interventions for AMD.


Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Macular , Anciano , Línea Celular , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/metabolismo , Degeneración Macular/genética , Degeneración Macular/metabolismo , Polimorfismo de Nucleótido Simple
2.
Stem Cell Res ; 60: 102670, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35078129

RESUMEN

Age-related macular degeneration (AMD) is a major cause of vision loss among the elderly in the Western world. AMD is multifactorial eye disease with a strong genetic contribution. Here, we report the generation and characterization of induced pluripotent stem cells (iPSCs) derived from peripheral blood mononuclear cells of three individuals above 70 years of age without AMD. These cell lines were generated to serve as control lines for cellular studies investigating the disease mechanisms and developing therapeutic interventions for AMD.


Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Macular , Anciano , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/metabolismo , Degeneración Macular/genética , Degeneración Macular/metabolismo
3.
Prog Retin Eye Res ; 84: 100952, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33610747

RESUMEN

Age-related macular degeneration (AMD) is the main cause of vision loss among the elderly in the Western world. While AMD is a multifactorial disease, the complement system was identified as one of the main pathways contributing to disease risk. The strong link between the complement system and AMD was demonstrated by genetic associations, and by elevated complement activation in local eye tissue and in the systemic circulation of AMD patients. Several complement inhibitors have been and are being explored in clinical trials, but thus far with limited success, leaving the majority of AMD patients without treatment options to date. This indicates that there is still a gap of knowledge regarding the functional implications of the complement system in AMD pathogenesis and how to bring these towards clinical translation. Many different experimental set-ups and disease models have been used to study complement activation in vivo and in vitro, and recently emerging patient-derived induced pluripotent stem cells and genome-editing techniques open new opportunities to study AMD disease mechanisms and test new therapeutic strategies in the future. In this review we provide an extensive overview of methods employed to understand the molecular processes of complement activation in AMD pathogenesis. We discuss the findings, advantages and challenges of each approach and conclude with an outlook on how recent, exciting developments can fill in current knowledge gaps and can aid in the development of effective complement-targeting therapeutic strategies in AMD.


Asunto(s)
Degeneración Macular , Anciano , Activación de Complemento , Proteínas del Sistema Complemento/genética , Variación Genética , Humanos , Degeneración Macular/genética
4.
Lab Chip ; 21(2): 272-283, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33346294

RESUMEN

The outer blood-retinal barrier (oBRB) tightly controls the transport processes between the neural tissue of the retina and the underlying blood vessel network. The barrier is formed by the retinal pigment epithelium (RPE), its basal membrane and the underlying choroidal capillary bed. Realistic three-dimensional cell culture based models of the oBRB are needed to study mechanisms and potential treatments of visual disorders such as age-related macular degeneration that result from dysfunction of the barrier tissue. Ideally, such models should also include clinically relevant read-outs to enable translation of experimental findings in the context of pathophysiology. Here, we report a microfluidic organ-on-a-chip model of the oBRB that contains a monolayer of human immortalized RPE and a microvessel of human endothelial cells, separated by a semi-permeable membrane. Confluent monolayers of both cell types were confirmed by fluorescence microscopy. The three-dimensional vascular structures within the chip were imaged by optical coherence tomography: a medical imaging technique, which is routinely applied in ophthalmology. Differences in diameters and vessel density could be readily detected. Upon inducing oxidative stress by treating with hydrogen peroxide (H2O2), a dose dependent increase in barrier permeability was observed by using a dynamic assay for fluorescence tracing, analogous to the clinically used fluorescence angiography. This organ-on-a-chip of the oBRB will allow future studies of complex disease mechanisms and treatments for visual disorders using clinically relevant endpoints in vitro.


Asunto(s)
Barrera Hematorretinal , Células Endoteliales , Humanos , Peróxido de Hidrógeno , Dispositivos Laboratorio en un Chip , Microfluídica , Permeabilidad
5.
Front Cell Dev Biol ; 8: 585675, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195235

RESUMEN

Optic neuropathies are a major cause of visual impairment due to retinal ganglion cell (RGC) degeneration. Human induced-pluripotent stem cells (iPSCs) represent a powerful tool for studying both human RGC development and RGC-related pathological mechanisms. Because RGC loss can be massive before the diagnosis of visual impairment, cell replacement is one of the most encouraging strategies. The present work describes the generation of functional RGCs from iPSCs based on innovative 3D/2D stepwise differentiation protocol. We demonstrate that targeting the cell surface marker THY1 is an effective strategy to select transplantable RGCs. By generating a fluorescent GFP reporter iPSC line to follow transplanted cells, we provide evidence that THY1-positive RGCs injected into the vitreous of mice with optic neuropathy can survive up to 1 month, intermingled with the host RGC layer. These data support the usefulness of iPSC-derived RGC exploration as a potential future therapeutic strategy for optic nerve regeneration.

6.
Nat Commun ; 10(1): 4524, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31586094

RESUMEN

A major challenge in the treatment of retinal degenerative diseases, with the transplantation of replacement photoreceptors, is the difficulty in inducing the grafted cells to grow and maintain light sensitive outer segments in the host retina, which depends on proper interaction with the underlying retinal pigment epithelium (RPE). Here, for an RPE-independent treatment approach, we introduce a hyperpolarizing microbial opsin into photoreceptor precursors from newborn mice, and transplant them into blind mice lacking the photoreceptor layer. These optogenetically-transformed photoreceptors are light responsive and their transplantation leads to the recovery of visual function, as shown by ganglion cell recordings and behavioral tests. Subsequently, we generate cone photoreceptors from human induced pluripotent stem cells, expressing the chloride pump Jaws. After transplantation into blind mice, we observe light-driven responses at the photoreceptor and ganglion cell levels. These results demonstrate that structural and functional retinal repair is possible by combining stem cell therapy and optogenetics.


Asunto(s)
Ingeniería Celular/métodos , Optogenética/métodos , Células Fotorreceptoras de Vertebrados/trasplante , Degeneración Retiniana/terapia , Animales , Animales Recién Nacidos , Técnicas de Cultivo de Célula/métodos , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/genética , Células HEK293 , Halorrodopsinas/genética , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Ratones , Ratones Noqueados , Degeneración Retiniana/genética , Rodopsina/genética , Transfección , Resultado del Tratamiento
7.
Stem Cells Int ; 2019: 7858796, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396286

RESUMEN

The reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) has broad applications in regenerative medicine. The generation of self-organized retinal structures from these iPSCs offers the opportunity to study retinal development and model-specific retinal disease with patient-specific iPSCs and provides the basis for cell replacement strategies. In this study, we demonstrated that the major type of glial cells of the human retina, Müller cells, can be reprogrammed into iPSCs that acquire classical signature of pluripotent stem cells. These Müller glial cell-derived iPSCs were able to differentiate toward retinal fate and generate concomitantly retinal pigmented epithelial cells and self-forming retinal organoid structures containing retinal progenitor cells. Retinal organoids recapitulated retinal neurogenesis with differentiation of retinal progenitor cells into all retinal cell types in a sequential overlapping order. With a modified retinal maturation protocol characterized by the presence of serum and high glucose levels, our study revealed that the retinal organoids contained pseudolaminated neural retina with important features reminiscent of mature photoreceptors, both rod and cone subtypes. This advanced maturation of photoreceptors not only supports the possibility to use 3D retinal organoids for studying photoreceptor development but also offers a novel opportunity for disease modeling, particularly for inherited retinal diseases.

8.
Prog Retin Eye Res ; 71: 1-25, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30885665

RESUMEN

The human retina fails to regenerate and cell-based therapies offer options for treatment of blinding retinal diseases, such as macular degeneration and retinitis pigmentosa. The last decade has witnessed remarkable advances in generation of retinal cells and retinal tissue from human pluripotent stem cells (PSCs). The development of 3D culture systems allowing generation of human retinal organoids has substantially increased the access to human material for future clinical applications aiming at replacing the lost photoreceptors in retinal degenerative diseases. This review outlines the advances that have been made toward generation and characterization of transplantable photoreceptors from PSCs and summarizes the current status of PSC-based preclinical studies for photoreceptor replacement conducted in animal models. Considering the recent turning point in our understanding of donor photoreceptor integration, this review focuses on the most crucial obstacles that hinder the photoreceptor replacement, discusses the most promising strategies to overcome them in the future, and provides a perspective on the approaching advancement in the application of PSC technology for treatment of photoreceptor degenerative diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas/trasplante , Degeneración Retiniana/terapia , Retinitis Pigmentosa/terapia , Trasplante de Células Madre/métodos , Animales , Humanos
9.
Stem Cell Reports ; 11(3): 665-680, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30100409

RESUMEN

Photoreceptor degenerative diseases are a major cause of blindness for which cell replacement is one of the most encouraging strategies. For stem cell-based therapy using human induced pluripotent stem cells (hiPSCs), it is crucial to obtain a homogenous photoreceptor cell population. We confirmed that the cell surface antigen CD73 is exclusively expressed in hiPSC-derived photoreceptors by generating a fluorescent cone rod homeobox (Crx) reporter hiPSC line using CRISPR/Cas9 genome editing. We demonstrated that CD73 targeting by magnetic-activated cell sorting (MACS) is an effective strategy to separate a safe population of transplantable photoreceptors. CD73+ photoreceptor precursors can be isolated in large numbers and transplanted into rat eyes, showing capacity to survive and mature in close proximity to host inner retina of a model of photoreceptor degeneration. These data demonstrate that CD73+ photoreceptor precursors hold great promise for a future safe clinical translation.


Asunto(s)
5'-Nucleotidasa/análisis , Células Madre Pluripotentes Inducidas/citología , Organoides/citología , Retina/citología , Células Fotorreceptoras Retinianas Bastones/citología , Animales , Línea Celular , Proteínas Ligadas a GPI/análisis , Humanos , Organoides/trasplante , Ratas Desnudas , Células Fotorreceptoras Retinianas Bastones/trasplante
10.
Stem Cells ; 35(5): 1176-1188, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28220575

RESUMEN

Human induced pluripotent stem cells (hiPSCs) are potentially useful in regenerative therapies for retinal disease. For medical applications, therapeutic retinal cells, such as retinal pigmented epithelial (RPE) cells or photoreceptor precursors, must be generated under completely defined conditions. To this purpose, we have developed a two-step xeno-free/feeder-free (XF/FF) culture system to efficiently differentiate hiPSCs into retinal cells. This simple method, relies only on adherent hiPSCs cultured in chemically defined media, bypassing embryoid body formation. In less than 1 month, adherent hiPSCs are able to generate self-forming neuroretinal-like structures containing retinal progenitor cells (RPCs). Floating cultures of isolated structures enabled the differentiation of RPCs into all types of retinal cells in a sequential overlapping order, with the generation of transplantation-compatible CD73+ photoreceptor precursors in less than 100 days. Our XF/FF culture conditions allow the maintenance of both mature cones and rods in retinal organoids until 280 days with specific photoreceptor ultrastructures. Moreover, both hiPSC-derived retinal organoids and dissociated retinal cells can be easily cryopreserved while retaining their phenotypic characteristics and the preservation of CD73+ photoreceptor precursors. Concomitantly to neural retina, this process allows the generation of RPE cells that can be effortlessly amplified, passaged, and frozen while retaining a proper RPE phenotype. These results demonstrate that simple and efficient retinal differentiation of adherent hiPSCs can be accomplished in XF/FF conditions. This new method is amenable to the development of an in vitro GMP-compliant retinal cell manufacturing protocol allowing large-scale production and banking of hiPSC-derived retinal cells and tissues. Stem Cells 2017;35:1176-1188.


Asunto(s)
Células Nutrientes/citología , Células Madre Pluripotentes Inducidas/citología , Organoides/citología , Preservación Biológica , Epitelio Pigmentado de la Retina/citología , Adhesión Celular , Diferenciación Celular , Línea Celular , Criopreservación , Humanos , Organoides/ultraestructura , Células Fotorreceptoras/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...