Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Elife ; 52016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27921994

RESUMEN

DNA replication is a fundamental biological process. The initial step in eukaryotic DNA replication is the assembly of the pre-initiation complex, including the formation of two head-to-head hexameric helicases around the replication origin. How these hexameric helicases interact with their origin dsDNA remains unknown. Here, we report the co-crystal structure of the SV40 Large-T Antigen (LT) hexameric helicase bound to its origin dsDNA. The structure shows that the six subunits form a near-planar ring that interacts with the origin, so that each subunit makes unique contacts with the DNA. The origin dsDNA inside the narrower AAA+ domain channel shows partial melting due to the compression of the two phosphate backbones, forcing Watson-Crick base-pairs within the duplex to flip outward. This structure provides the first snapshot of a hexameric helicase binding to origin dsDNA, and suggests a possible mechanism of origin melting by LT during SV40 replication in eukaryotic cells.


Asunto(s)
Antígenos Transformadores de Poliomavirus/química , Antígenos Transformadores de Poliomavirus/metabolismo , Antígenos Virales de Tumores/química , Antígenos Virales de Tumores/metabolismo , ADN/química , ADN/metabolismo , Virus 40 de los Simios/enzimología , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Origen de Réplica
3.
J Biol Chem ; 287(32): 26854-66, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22700977

RESUMEN

DNA polymerase α-primase (Pol-prim) plays an essential role in eukaryotic DNA replication, initiating synthesis of the leading strand and of each Okazaki fragment on the lagging strand. Pol-prim is composed of a primase heterodimer that synthesizes an RNA primer, a DNA polymerase subunit that extends the primer, and a regulatory B-subunit (p68) without apparent enzymatic activity. Pol-prim is thought to interact with eukaryotic replicative helicases, forming a dynamic multiprotein assembly that displays primosome activity. At least three subunits of Pol-prim interact physically with the hexameric replicative helicase SV40 large T antigen, constituting a simple primosome that is active in vitro. However, structural understanding of these interactions and their role in viral chromatin replication in vivo remains incomplete. Here, we report the detailed large T antigen-p68 interface, as revealed in a co-crystal structure and validated by site-directed mutagenesis, and we demonstrate its functional importance in activating the SV40 primosome in cell-free reactions with purified Pol-prim, as well as in monkey cells in vivo.


Asunto(s)
ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , Secuencia de Bases , Southern Blotting , ADN Polimerasa I/química , ADN Primasa/química , Cartilla de ADN , Replicación del ADN , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Virus 40 de los Simios/genética
4.
Curr Opin Struct Biol ; 20(6): 756-62, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20870402

RESUMEN

Genomic DNA replication is a necessary step in the life cycles of all organisms. To initiate DNA replication, the double-stranded DNA (dsDNA) at the origin of replication must be separated or melted; this melted region is propagated and a mature replication fork is formed. To accomplish origin recognition, initial DNA melting, and the eventual formation of a replication fork, coordinated activity of initiators, helicases, and other cellular factors are required. In this review, we focus on recent advances in the structural and biochemical studies of the initiators and the replicative helicases in multiple replication systems, with emphasis on the systems in archaeal and eukaryotic cells. These studies have yielded insights into the plausible mechanisms of the early stages of DNA replication.


Asunto(s)
Replicación del ADN , ADN/biosíntesis , ADN/química , Conformación de Ácido Nucleico , Origen de Réplica , ADN/genética , ADN Helicasas/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Desnaturalización de Ácido Nucleico , Origen de Réplica/genética
5.
J Mol Biol ; 397(5): 1276-86, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20219473

RESUMEN

The Simian virus 40 (SV40) large tumor antigen (LTag) functions as the replicative helicase and initiator for viral DNA replication. For SV40 replication, the first essential step is the assembly of an LTag double hexamer at the origin DNA that will subsequently melt the origin DNA to initiate fork unwinding. In this study, we used three-dimensional cryo-electron microscopy to visualize early events in the activation of DNA replication in the SV40 model system. We obtained structures of wild-type double-hexamer complexes of LTag bound to SV40 origin DNA, to which atomic structures have been fitted. Wild-type LTag was observed in two distinct conformations: In one conformation, the central module containing the J-domains and the origin binding domains of both hexamers is a compact closed ring. In the other conformation, the central module is an open ring with a gap formed by rearrangement of the N-terminal regions of the two hexamers, potentially allowing for the passage of single-stranded DNA generated from the melted origin DNA. Double-hexamer complexes containing mutant LTag that lacks the N-terminal J-domain show the central module predominantly in the closed-ring state. Analyses of the LTag C-terminal regions reveal that the LTag hexamers bound to the A/T-rich tract origin of replication and early palindrome origin of replication elements are structurally distinct. Lastly, visualization of DNA density protruding from the LTag C-terminal domains suggests that oligomerization of the LTag complex takes place on double-stranded DNA.


Asunto(s)
Antígenos Virales de Tumores/química , Virus 40 de los Simios/genética , Replicación Viral/genética , Antígenos Virales de Tumores/genética , Antígenos Virales de Tumores/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Replicación del ADN/genética , ADN Viral/metabolismo , ADN Viral/fisiología , Conformación Proteica , Multimerización de Proteína , Virus 40 de los Simios/química
6.
PLoS Comput Biol ; 5(9): e1000514, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19779548

RESUMEN

Simian virus 40 large tumor antigen (LTag) is an efficient helicase motor that unwinds and translocates DNA. The DNA unwinding and translocation of LTag is powered by ATP binding and hydrolysis at the nucleotide pocket between two adjacent subunits of an LTag hexamer. Based on the set of high-resolution hexameric structures of LTag helicase in different nucleotide binding states, we simulated a conformational transition pathway of the ATP binding process using the targeted molecular dynamics method and calculated the corresponding energy profile using the linear response approximation (LRA) version of the semi-macroscopic Protein Dipoles Langevin Dipoles method (PDLD/S). The simulation results suggest a three-step process for the ATP binding from the initial interaction to the final tight binding at the nucleotide pocket, in which ATP is eventually "locked" by three pairs of charge-charge interactions across the pocket. Such a "cross-locking" ATP binding process is similar to the binding zipper model reported for the F1-ATPase hexameric motor. The simulation also shows a transition mechanism of Mg2+ coordination to form the Mg-ATP complex during ATP binding, which is accompanied by the large conformational changes of LTag. This simulation study of the ATP binding process to an LTag and the accompanying conformational changes in the context of a hexamer leads to a refined cooperative iris model that has been proposed previously.


Asunto(s)
Adenosina Trifosfato/metabolismo , Antígenos Transformadores de Poliomavirus/metabolismo , Biología Computacional/métodos , ADN Helicasas/metabolismo , Virus 40 de los Simios/metabolismo , Adenosina Trifosfato/química , Antígenos Transformadores de Poliomavirus/química , Simulación por Computador , ADN Helicasas/química , Enlace de Hidrógeno , Magnesio/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Virus 40 de los Simios/química , Virus 40 de los Simios/enzimología , Termodinámica , Agua/metabolismo
7.
J Virol ; 82(12): 6017-23, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18400864

RESUMEN

The high-resolution structural data for simian virus 40 large-T-antigen helicase revealed a set of nine residues bound to ATP/ADP directly or indirectly. The functional role of each of these residues in ATP hydrolysis and also the helicase function of this AAA+ (ATPases associated with various cellular activities) molecular motor are unclear. Here, we report our mutational analysis of each of these residues to examine their functionality in oligomerization, DNA binding, ATP hydrolysis, and double-stranded DNA (dsDNA) unwinding. All mutants were capable of oligomerization in the presence of ATP and could bind single-stranded DNA and dsDNA. ATP hydrolysis was substantially reduced for proteins with mutations of residues making direct contact with the gamma-phosphate of ATP or the apical water molecule. A potentially noncanonical "arginine finger" residue, K418, is critical for ATP hydrolysis and helicase function, suggesting a new type of arginine finger role by a lysine in the stabilization of the transition state during ATP hydrolysis. Interestingly, our mutational data suggest that the positive- and negative-charge interactions in the uniquely observed residue pairs, R498/D499 and R540/D502, in large-T-antigen helicase are critically involved in the transfer of energy of ATP binding/hydrolysis to DNA unwinding.


Asunto(s)
Antígenos Virales de Tumores/química , ADN Helicasas/metabolismo , Modelos Moleculares , Nucleótidos/química , Virus 40 de los Simios/genética , Adenosina Trifosfatasas/análisis , Alanina/metabolismo , Sustitución de Aminoácidos , Antígenos Virales de Tumores/genética , Antígenos Virales de Tumores/metabolismo , ADN Helicasas/análisis , ADN de Cadena Simple/metabolismo , Hidrólisis , Cinética , Mutagénesis Sitio-Dirigida , Nucleótidos/metabolismo , Radioisótopos de Fósforo/metabolismo , Estructura Terciaria de Proteína
8.
Proc Natl Acad Sci U S A ; 102(32): 11248-53, 2005 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-16061814

RESUMEN

Simian virus 40 large tumor antigen is required for DNA unwinding during viral replication. The helicase-active form of large tumor antigen is a ring-shaped hexamer/double hexamer, which has a positively charged hexameric channel for interacting with DNA. On the hexameric channel surface are six beta-hairpin structures and loops, emanating from each of the six subunits. At the tips of the beta-hairpin and the loop structures are two ring-shaped residues, H513 and F459, respectively. Additionally, two positively charged residues, K512 and K516, are near the tip of the beta-hairpin. The positions of these ring-shaped and positively charged residues suggest that they may play a role in binding DNA for helicase function. To understand the roles of these residues in helicase function, we obtained a set of mutants and examined various activities, including oligomerization, ATPase, DNA binding, and helicase activities. We found that substitution of these residues by Ala abolished helicase activity. Extensive mutagenesis showed that substitutions by ring-shaped residues (W and Y) at position F459 and by residues with hydrophobic or long aliphatic side chains (W, Y, F, L, M, and R) at position H513 supported helicase activity. Our study demonstrated that the four residues (F459, H513, K512, and K516) play a critical role in interacting with DNA for helicase function. The results suggest a possible mechanism to explain how these residues, as well as the beta-hairpin and the loop structures on which the residues reside, participate in binding and translocating DNA for origin melting and unwinding.


Asunto(s)
Antígenos Virales de Tumores/química , ADN Helicasas/metabolismo , ADN/metabolismo , Modelos Moleculares , Virus 40 de los Simios/genética , Antígenos Virales de Tumores/genética , Antígenos Virales de Tumores/metabolismo , Cromatografía en Gel , Cristalización , Ensayo de Cambio de Movilidad Electroforética , Mutagénesis , Oligonucleótidos , Radioisótopos de Fósforo , Estructura Terciaria de Proteína
9.
Cell ; 119(1): 47-60, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15454080

RESUMEN

The large tumor antigen (LTag) of simian virus 40, an AAA(+) protein, is a hexameric helicase essential for viral DNA replication in eukaryotic cells. LTag functions as an efficient molecular machine powered by ATP binding and hydrolysis for origin DNA melting and replication fork unwinding. To understand how ATP binding and hydrolysis are coupled to conformational changes, we have determined high-resolution structures ( approximately 1.9 A) of LTag hexamers in distinct nucleotide binding states. The structural differences of LTag in various nucleotide states detail the molecular mechanisms of conformational changes triggered by ATP binding/hydrolysis and reveal a potential mechanism of concerted nucleotide binding and hydrolysis. During these conformational changes, the angles and orientations between domains of a monomer alter, creating an "iris"-like motion in the hexamer. Additionally, six unique beta hairpins on the channel surface move longitudinally along the central channel, possibly serving as a motor for pulling DNA into the LTag double hexamer for unwinding.


Asunto(s)
Antígenos Transformadores de Poliomavirus/química , Antígenos Transformadores de Poliomavirus/metabolismo , ADN Helicasas/química , ADN Helicasas/metabolismo , Replicación del ADN/genética , ADN/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos/genética , Animales , Sitios de Unión/genética , Cristalografía por Rayos X , ADN/genética , Hidrólisis , Modelos Moleculares , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Nucleótidos/genética , Nucleótidos/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
10.
J Biol Chem ; 279(37): 38952-9, 2004 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-15247252

RESUMEN

The large T (LT) antigen encoded by SV40 virus is a multi-domain, multi-functional protein that can not only transform cells but can also function as an efficient molecular machine to unwind duplex DNA for DNA replication. Here we report our findings on the oligomeric forms, domain interactions, and ATPase and helicase activities of various LT constructs. For the LT constructs that hexamerize, only two oligomeric forms, hexameric and monomeric, were detected in the absence of ATP/ADP. However, the presence of ATP/ADP stabilizes LT in the hexameric form. The LT constructs lacking the N- and C-terminal domains, but still retaining hexamerization ability, have ATPase as well as helicase activities at a level comparable to the full-length LT, suggesting the importance of hexamerization for these activities. The domain structures and the possible interactions between different LT fragments were probed with limited protease (trypsin) digestion. Such protease digestion generated a distinct pattern in the presence and absence of ATP/ADP and Mg(2+). The most C-terminal fragment (residues 628-708, containing the host-range domain), which was thought to be completely unstructured, was somewhat trypsin-resistant despite the presence of multiple Arg and Lys, possibly due to a rather structured C terminus. Furthermore, the N- and C-terminal fragments cleaved by trypsin were associated with other parts of the molecule, suggesting the interdomain interactions for the fragments at both ends.


Asunto(s)
Antígenos Transformadores de Poliomavirus/química , ADN Helicasas/química , Adenosina Trifosfatasas/química , Arginina/química , Cromatografía en Gel , ADN/química , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Glutatión Transferasa/metabolismo , Lisina/química , Magnesio/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Tripsina/farmacología , Rayos Ultravioleta
11.
Nucleic Acids Res ; 32(3): 1103-12, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14960720

RESUMEN

The assembly of the complex that forms over the simian virus 40 origin to initiate DNA replication is not well understood. This complex is composed of the virus-coded T antigen and three cellular proteins, replication protein A (RPA), DNA polymerase alpha/primase (pol/prim) and topoisomerase I (topo I) in association with the origin. The order in which these various proteins bind to the DNA was investigated by performing binding assays using biotinylated origin DNA. We demonstrate that in the presence of all four proteins, pol/prim was essential to stabilize the initiation complex from the disruptive effects of topo I. At the optimal concentration of pol/prim, topo I and RPA bound efficiently to the complex, although pol/prim itself was not detected in significant amounts. At higher concentrations less topo I was recruited, suggesting that DNA polymerase is an important modulator of the binding of topo I. Topo I, in turn, appeared to be involved in recruiting RPA. RPA, in contrast, seemed to have little or no effect on the recruitment of the other proteins to the origin. These and other data suggested that pol/prim is the first cellular protein to interact with the double-hexameric T antigen bound to the origin. This is likely followed by topo I and then RPA, or perhaps by a complex of topo I and RPA. Stoichiometric analysis of the topo I and T antigen present in the complex suggested that two molecules of topo I are recruited per double hexamer. Finally, we demonstrate that DNA has a role in recruiting topo I to the origin.


Asunto(s)
ADN Viral/metabolismo , Origen de Réplica , Virus 40 de los Simios/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Secuencia de Bases , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Viral/química , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Sustancias Macromoleculares , Datos de Secuencia Molecular , Proteína de Replicación A , Virus 40 de los Simios/enzimología , Virus 40 de los Simios/fisiología , Replicación Viral
12.
Nature ; 423(6939): 512-8, 2003 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-12774115

RESUMEN

The oncoprotein large tumour antigen (LTag) is encoded by the DNA tumour virus simian virus 40. LTag transforms cells and induces tumours in animals by altering the functions of tumour suppressors (including pRB and p53) and other key cellular proteins. LTag is also a molecular machine that distorts/melts the replication origin of the viral genome and unwinds duplex DNA. LTag therefore seems to be a functional homologue of the eukaryotic minichromosome maintenance (MCM) complex. Here we present the X-ray structure of a hexameric LTag with DNA helicase activity. The structure identifies the p53-binding surface and reveals the structural basis of hexamerization. The hexamer contains a long, positively charged channel with an unusually large central chamber that binds both single-stranded and double-stranded DNA. The hexamer organizes into two tiers that can potentially rotate relative to each other through connecting alpha-helices to expand/constrict the channel, producing an 'iris' effect that could be used for distorting or melting the origin and unwinding DNA at the replication fork.


Asunto(s)
Antígenos Transformadores de Poliomavirus/química , ADN Helicasas/química , Replicación del ADN , Virus 40 de los Simios/química , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Sitios de Unión , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteína p53 Supresora de Tumor/metabolismo
13.
J Mol Biol ; 316(5): 1023-32, 2002 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-11884140

RESUMEN

The Holliday junction is the central intermediate in homologous recombination. Branch migration of this four-stranded DNA structure is a key step in genetic recombination that affects the extent of genetic information exchanged between two parental DNA molecules. Here, we have constructed synthetic Holliday junctions to test the effects of p53 on both spontaneous and RuvAB promoted branch migration as well as the effect on resolution of the junction by RuvC. We demonstrate that p53 blocks branch migration, and that cleavage of the Holliday junction by RuvC is modulated by p53. These findings suggest that p53 can block branch migration promoted by proteins such as RuvAB and modulate the cleavage by Holliday junction resolution proteins such as RuvC. These results suggest that p53 could have similar effects on eukaryotic homologues of RuvABC and thus have a direct role in recombinational DNA repair.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , ADN Helicasas , Proteínas de Unión al ADN/antagonistas & inhibidores , ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Conformación de Ácido Nucleico , Recombinación Genética/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Disparidad de Par Base/genética , Secuencia de Bases , Unión Competitiva , ADN/química , ADN/genética , Reparación del ADN/genética , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Ratones , Modelos Genéticos , Recombinación Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA