Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 9(8): 667-75, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20651807

RESUMEN

Synthetic solid-state nanopores are being intensively investigated as single-molecule sensors for detection and characterization of DNA, RNA and proteins. This field has been inspired by the exquisite selectivity and flux demonstrated by natural biological channels and the dream of emulating these behaviours in more robust synthetic materials that are more readily integrated into practical devices. So far, the guided etching of polymer films, focused ion-beam sculpting, and electron-beam lithography and tuning of silicon nitride membranes have emerged as three promising approaches to define synthetic solid-state pores with sub-nanometre resolution. These procedures have in common the formation of nominally cylindrical or conical pores aligned normal to the membrane surface. Here we report the formation of 'kinked' silica nanopores, using evaporation-induced self-assembly, and their further tuning and chemical derivatization using atomic-layer deposition. Compared with 'straight through' proteinaceous nanopores of comparable dimensions, kinked nanopores exhibit up to fivefold reduction in translocation velocity, which has been identified as one of the critical issues in DNA sequencing. Additionally, we demonstrate an efficient two-step approach to create a nanopore array exhibiting nearly perfect selectivity for ssDNA over dsDNA. We show that a coarse-grained drift-diffusion theory with a sawtooth-like potential can reasonably describe the velocity and translocation time of DNA through the pore. By control of pore size, length and shape, we capture the main functional behaviours of protein pores in our solid-state nanopore system.


Asunto(s)
Materiales Biocompatibles/química , ADN/química , Nanocompuestos/química , Nanoestructuras/química , Nanotecnología/métodos , ADN de Cadena Simple/química , Electroquímica/métodos , Membranas Artificiales , Plásmidos/metabolismo , Porosidad , Dióxido de Silicio/química , Propiedades de Superficie , Temperatura
2.
Langmuir ; 26(6): 4357-67, 2010 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-19957975

RESUMEN

Previously, the synthesis of highly oriented pure double-gyroid nanoporous silica films has been demonstrated using evaporation-induced self-assembly (EISA) and dip-coating with a specialty triblock surfactant (PEO-PPO-alkyl) as the template. For these films, grazing-incidence small-angle X-ray scattering (GISAXS) was used to determine orientation and structure. However, GISAXS is not widely available, and we have observed significant batch-to-batch variability in the PEO-PPO-alkyl surfactants used. Here, we show for the first time: (1) synthesis of highly oriented pure double-gyroid nanoporous silica films using freely available EO(19)-PO(43)-EO(19) surfactant (Pluronic-P84) as the nanostructure-directing agent, (2) the use of spin-coating and dip-coating EISA to fabricate the double-gyroid films, and (3) the use of theta-theta X-ray diffractometers (commonly available and typically used for powder X-ray diffraction, PXRD) to identify the double-gyroid phase. Processing diagrams for P84 using dip-coating and spin-coating are shown in order to map the dependency of the nanostructure on solution composition, relative humidity, and solution aging time. In addition, an effect of the rate of evaporation during EISA is observed via dependence on the angular velocity in spin-coating. Also, through quantitative comparison of the GISAXS patterns with corresponding PXRD patterns, previously unexplained diffraction peaks in the PXRD patterns are shown to result from diffraction from crystallographic planes that are not parallel to the substrate (typically not observed in PXRD) due to the small angles involved and the nonzero acceptance angle of the PXRD Soller slits. These peaks provide a means to distinctly identify the double-gyroid phase using PXRD. The same trends relating aging-time-before-coating to the phase that forms via EISA are observed with EO(19)-PO(43)-EO(19) as was the case in previous studies using EO(17)-PO(14)-C(12). This shows the generality of use of aging time to synthesize nanoporous silica films with nonionic surfactants. Finally, a list of "tips and tricks" is provided to facilitate easy reproducible synthesis of double-gyroid nanoporous silica thin films in other laboratories.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...