Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Food Sci Technol ; 52(5): 3093-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25892814

RESUMEN

A new method is developed to determine the presence of sunflower oil in olive oil. α-tocopherol is selected as discriminating parameter for detecting sunflower oil adulterant in olive oil. Admixtures of olive oil and sunflower oil (5 %, 10 %, 15 % and 20 % sunflower oil in olive oil) are prepared. These admixtures are analysed by reversed phase high pressure liquid chromatography coupled with fluorescence detector. The sample preparation does not require saponification or addition of antioxidant. The chromatographic system consists of a C18 column with methanol: acetonitrile (50:50) mobile phase. Fluorescence detector excitation wavelength is set at 290 nm and emission wavelength is set at 330 nm. The α tocopherol concentration increases linearly in olive oil adulterated with sunflower oil. The method is simple, selective, sensitive and is precise (RSD = 2.65 %) for α tocopherol. The present method can precisely detect 5 % sunflower oil in olive oil.

2.
J Nanosci Nanotechnol ; 12(8): 6192-201, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22962726

RESUMEN

Nanostructured SnO2 thin films were prepared by spray pyrolysis technique onto glass substrates with different thickness by varying quantity of precursor solution. The structural, optical and electrical properties of these films have been studied. The crystallographic structure of the films was studied by X-ray diffraction (XRD). It is found that the films are tetragonal with (110) orientation. The grain size increases with thickness. Atomic Force Microscopy (AFM) showed that the nanocrystalline nature of the films with porous nature. The grain size increased 14 to 29 nm with increase in film thickness. The studies on the optical properties show that the direct band gap value decreases from 3.75 to 3.50 eV. The temperature dependence of the electrical conductivity was studied. The activation energies of the films are calculated from the conductance temperature characteristics. The nanostructured SnO2 thin films were used as sensing layers for resistive gas sensors. The dependence of gas sensing properties on the thickness of SnO2 thin films was investigated. The gas response of the SnO2 thin films towards the H2S gas was determined at an operating temperature of 150 degrees C. The sensitivity towards H2S gas is strongly depending on surface morphology of the SnO2 thin films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA