Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Integr Environ Assess Manag ; 18(1): 42-48, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33913621

RESUMEN

The use of natural habitats for coastal protection (also known as Nature-Based Solutions or NBS) in place of engineered structures like breakwaters and seawalls can yield a wide range of ecological and economic benefits. Despite these advantages, NBS are not commonly implemented for shoreline protection due to uncertainty over the amount of protection afforded by each unique feature and how protective capacity and ecological benefits are likely to change over time as NBS mature and adapt to changing environmental drivers. Here, we highlight the recent restoration of Swan Island in the Chesapeake Bay, Maryland, USA, and the collaborative approach used to evaluate post-construction performance, as a framework for quantitative evaluation of NBS projects. At Swan Island, 60 000 cubic yards of dredged sediment were used to elevate and restore the island's footprint with an emphasis on increasing its protective and ecological benefits and long-term resilience to sea-level rise. Five entities have leveraged resources to quantify the benefits and efficacy of island restoration by conducting pre- and post-restoration monitoring, which supports the development of an integrated, simulation model that includes three "measured" system parameters: wave height, vegetative biomass, and island profile (i.e., elevations). The model will be used to predict island performance under a range of different system scenarios and used to inform adaptive management options. Results will demonstrate the efficacy of leveraging natural and engineered processes to restore island systems while providing a framework for quantifying NBS. Integr Environ Assess Manag 2022;18:42-48. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Asunto(s)
Bahías , Ecosistema , Ecotoxicología , Maryland
2.
J Environ Manage ; 168: 111-22, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26704453

RESUMEN

Coral reefs are in decline worldwide due to anthropogenic stressors including reductions in water and substratum quality. Dredging results in the mobilization of sediments, which can stress and kill corals via increasing turbidity, tissue damage and burial. The Particle Tracking Model (PTM) was applied to predict the potential impacts of dredging-associated sediment exposure on the coral reef ecosystems of Apra Harbor, Guam. The data were interpreted using maps of bathymetry and coral abundance and distribution in conjunction with impact parameters of suspended sediment concentration (turbidity) and sedimentation using defined coral response thresholds. The results are presented using a "stoplight" model of negligible or limited impacts to coral reefs (green), moderate stress from which some corals would be expected to recover while others would not (yellow) and severe stress resulting in mortality (red). The red conditions for sediment deposition rate and suspended sediment concentration (SSC) were defined as values exceeding 25 mg cm(-2) d(-1) over any 30 day window and >20 mg/l for any 18 days in any 90 day period over a column of water greater than 2 m, respectively. The yellow conditions were defined as values >10 mg cm(-2) d(-1) and <25 mg cm(-2) d(-1) over any 30 day period, and as 20% of 3 months' concentration exceeding 10 mg/l for the deposition and SSC, respectively. The model also incorporates the potential for cumulative effects on the assumption that even sub-lethal stress levels can ultimately lead to mortality in a multi-stressor system. This modeling approach can be applied by resource managers and regulatory agencies to support management decisions related to planning, site selection, damage reduction, and compensatory mitigation.


Asunto(s)
Arrecifes de Coral , Monitoreo del Ambiente , Sedimentos Geológicos/análisis , Contaminantes del Agua/toxicidad , Animales , Ecosistema , Guam , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...