Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 15985, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163442

RESUMEN

Alizarin detection in fish fins is extensively employed because it is easy to use. However, in eels, the eelGFP fluorescent protein may impede the detection of the fluorescent markers in the eel tissues. The study tests the effectiveness of three of the most up-to-date alizarin-detecting technologies on the living body and fins of European glass eels (Anguilla anguilla L.). The findings demonstrated that the control group had a high autofluorescence at alizarin and eelGFP maxima bands. With fluorescence reflectance imaging (FRI), the eel living body autofluorescence impeded the detection of the marked eels. In contrast with experimental excitation-emission-matrix (EEM) fluorescence analyses, 99% of the marked eels were correctly assigned to their group from fluorescence analyses of their fin cellular contents. With epifluorometry (EPI), 100% of the marked eels were detected with the caudal fin tips when excited at 450-490 nm wavelengths due to a weaker autofluorescence signal. EEM and FRI assays unveiled an average fluorescence quenching 60% and 44% of the marked group respectively, in the alizarin and eelGFP maxima bands. The fluorescence quenching observed is discussed. Results will benefit experimental design by examining autofluorescence effects on mark detection and the development of non-invasive detection methods in this critically endangered species.


Asunto(s)
Anguilla , Anguilla/metabolismo , Animales , Antraquinonas/metabolismo , Colorantes/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-26921640

RESUMEN

Variation in gene regulation may be involved in the differences observed for life history traits within species. American eel (Anguilla rostrata) is well known to harbor distinct ecotypes within a single panmictic population. We examined the expression of genes involved in the regulation of appetite as well as lipid and glycogen among glass eels migrating to different locations on the Canadian east coast and captured at two different periods of upstream migration. Gene expression levels of three reference and five candidate genes were analyzed by real-time PCR with Taqman probes in recently captured wild glass eels. All gene transcripts were detected in glass eels. Of the five candidate genes, bile salt activated and triacylglycerol lipases were respectively 7.65 and 3.25 times more expressed in glass eels from the St. Lawrence estuary than in those from Nova Scotia, and there was no effect related to the two-week difference in capture date. These two genes explained 82.41% of the dissimilarity between the two rivers. In contrast, glycogen phosphorylase, ghrelin, and leptin receptor genes showed no significant differences in gene transcription. These results confirmed at the molecular level an observation that was recently made at the phenotypic level that glass eels from the St. Lawrence estuary have a greater capacity to use lipid reserves to sustain their metabolic needs. These observations add to the body of evidence supporting the hypothesis that regional phenotypic variation observed in American eel is determined early in life and that part of this variation is likely under genetic control.


Asunto(s)
Anguilla/genética , Anguilla/metabolismo , Regulación de la Expresión Génica , Metabolismo de los Lípidos/genética , Animales , Ecosistema , Estuarios , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Glucógeno/genética , Glucógeno/metabolismo , Lipasa/genética , Nueva Escocia , Ríos
3.
Artículo en Inglés | MEDLINE | ID: mdl-26119597

RESUMEN

Energy status was analyzed in glass eels captured during two early waves of arrival at the mouths of the Mersey River, Nova Scotia, Canada (MR), and Grande-Rivière-Blanche, Québec, Canada (GRB), and according to their salinity preference (freshwater, brackish, or saltwater). Glass eels captured in the GRB estuary were larger, more pigmented, and exhibited higher whole-body glycogen, phospholipid, and sterol and wax ester contents. Those from MR had a higher condition index and a higher whole-body triacylglycerol content, suggesting different patterns of storage and/or use of energy reserves. Within a river, a delay of two weeks in estuarine arrival was characterized by significantly lower energy reserves. No differences in energy storage were observed according to salinity preference. Thus, the results revealed the occurrence of different energy storage strategies according to glass eel migration distance and duration, but not according to salinity preference.


Asunto(s)
Anguilla/fisiología , Migración Animal/fisiología , Ecosistema , Metabolismo Energético/fisiología , Animales , Canadá , Estuarios , Geografía , Glucógeno/metabolismo , Modelos Lineales , Fosfolípidos/metabolismo , Ríos , Salinidad , Esteroles/metabolismo , Factores de Tiempo , Triglicéridos/metabolismo , Estados Unidos , Ceras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...