Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 205(10): e0027423, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37811985

RESUMEN

Membranes are a universal barrier to all cells. Phospholipids, essential bacterial membrane components, are composed of a polar head and apolar fatty acid (FA) chains. Most bacterial FAs are synthesized by the Type II FA synthesis pathway (FASII). In Streptococcaceae, Enterococci, and Lactococcus lactis, a unique feedback mechanism controls the FASII gene expression. FabT, encoded in the FASII main locus, is the repressor, and it is activated by long-chain acyl-acyl carrier protein (acyl-ACP). Many Streptococci, Enterococcus faecalis, but not L. lactis, possess two ACPs. The AcpA-encoding gene is within the FASII locus and is coregulated with the FASII genes. Acyl-AcpA is the end product of FASII. The AcpB-encoding gene is in operon with plsX encoding an acyl-ACP:phosphate acyltransferase. The role of acyl-AcpB as FabT corepressor is controversial. Streptococcus pyogenes, which causes a wide variety of diseases ranging from mild non-invasive to severe invasive infections, possesses AcpB. In this study, by comparing the expression of FabT-controlled genes in an acpB-deleted mutant with those in a wild-type and in a fabT mutant strain, grown in the presence or absence of exogenous FAs, we show that AcpB is the S. pyogenes FabT main corepressor. Its deletion impacts membrane FA composition and bacterial adhesion to eucaryotic cells, highlighting the importance of FASII control. Importance Membrane composition is crucial for bacterial growth or interaction with the environment. Bacteria synthesize fatty acids (FAs), membrane major constituents, via the Type II FAS (FASII) pathway. Streptococci control the expression of the FASII genes via a transcriptional repressor, FabT, with acyl-acyl carrier proteins (ACPs) as corepressor. Streptococcus pyogenes that causes a wide variety of diseases ranging from mild non-invasive to severe invasive infections possesses two ACPs. acpA, but not acpB, is a FASII gene. In this study, we show that acyl-AcpBs are FabT main corepressors. Also, AcpB deletion has consequences on the membrane FA composition and bacterial adhesion to host cells. In addition to highlighting the importance of FASII control in the presence of exogeneous FAs for the adaptation of bacteria to their environment, our data indicate that FASII gene repression is mediated by a corepressor whose gene expression is not repressed in the presence of exogenous FAs.


Asunto(s)
Ácidos Grasos , Streptococcus pyogenes , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Proteínas Co-Represoras/genética , Ácidos Grasos/metabolismo , Operón , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
Microbiol Spectr ; 11(3): e0016023, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37199642

RESUMEN

Non-beta-hemolytic streptococci (NBHS), also referred to as viridans streptococci, represent an underestimated cause of human invasive diseases. Their resistance to antibiotics, including beta-lactam agents, often complicate their therapeutic management. A prospective multicenter study was conducted by the French National Reference Center for Streptococci between March and April 2021 to describe the clinical and microbiological epidemiology of invasive infections due to NBHS, excluding pneumococcus. A total of 522 NBHS invasive cases were collected. Distribution among streptococcal groups was: Streptococcus anginosus (33%), Streptococcus mitis (28%), Streptococcus sanguinis (16%), Streptococcus bovis/equinus (15%), Streptococcus salivarius (8%), and Streptococcus mutans (<1%). Median age of infection was 68 years old (range <1 day to 100 years). Cases were more frequent in male patients (gender ratio M/F 2.1:1) and manifested mainly as bacteremia without focus (46%), intra-abdominal infections (18%) and endocarditis (11%). All isolates were susceptible to glycopeptides and displayed low-level inherent gentamicin resistance. All isolates of the S. bovis/equinus, S. anginosus, and S. mutans groups were susceptible to beta-lactams. Conversely, nonsusceptibility to beta-lactams was found in 31%, 28%, and 52% of S. mitis, S. salivarius, and S. sanguinis isolates, respectively. The screening for beta-lactam resistance using the recommended one unit benzylpenicillin disk screening failed to detect 21% of resistant isolates (21/99). Last, overall resistance rates to the alternative anti-streptococcal molecules clindamycin and moxifloxacin were 29% (149/522) and 1.6% (8/505), respectively. IMPORTANCE NBHS are recognized as opportunistic pathogens particularly involved in infections of the elderly and immunocompromised patients. This study underlines their importance as common causes of severe and difficult-to-treat infections such as endocarditis. Although species of the S. anginosus and S. bovis/equinus groups remain constantly susceptible to beta-lams, resistance in oral streptococci exceeds 30% and screening techniques are not fully reliable. Therefore, accurate species identification and antimicrobial susceptibility testing by MICs determination appears essential for the treatment of NBHS invasive infections, together with continued epidemiological surveillance.


Asunto(s)
Endocarditis , Streptococcus , Humanos , Masculino , Anciano , Recién Nacido , Estudios Prospectivos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , beta-Lactamas/farmacología
3.
Cell Rep ; 29(12): 3974-3982.e4, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31851927

RESUMEN

The essentiality of fatty acid synthesis (FASII) products in the human pathogen Staphylococcus aureus is the underlying rationale for FASII-targeted antimicrobial drug design. Reports of anti-FASII efficacy in animals support this choice. However, restricted test conditions used previously led us to investigate this postulate in a broader, host-relevant context. We report that S. aureus rapidly adapts to FASII antibiotics without FASII mutations when exposed to host environments. FASII antibiotic administration upon signs of infection, rather than just after inoculation as commonly practiced, fails to eliminate S. aureus in a septicemia model. In vitro, serum lowers S. aureus membrane stress, leading to a greater retention of the substrates required for environmental fatty acid (eFA) utilization: eFAs and the acyl carrier protein. In this condition, eFA occupies both phospholipid positions, regardless of anti-FASII selection. Our results identify S. aureus membrane plasticity in host environments as a main limitation for using FASII antibiotics in monotherapeutic treatments.


Asunto(s)
Adaptación Fisiológica , Antibacterianos/farmacología , Ácidos Grasos/metabolismo , Interacciones Huésped-Patógeno , Sepsis/patología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/efectos de los fármacos , Animales , Farmacorresistencia Bacteriana , Femenino , Ratones , Ratones Endogámicos BALB C , Sepsis/tratamiento farmacológico , Sepsis/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA